diff --git a/README.md b/README.md index 662528c..99d88bb 100644 --- a/README.md +++ b/README.md @@ -9,10 +9,10 @@ This is a fast, minimal implementation of Boris Dayma's [DALL·E Mega](https://github.com/borisdayma/dalle-mini). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch. To generate a 4x4 grid of DALL·E Mega images it takes -- **1m 29s seconds** with a T4 in Colab -- **48 seconds** with a P100 in Colab -- **16 seconds** with an A100 on Replicate -- **TBD** with an H100 (@NVIDIA?) +- 89 sec with a T4 in Colab +- 48 sec with a P100 in Colab +- 16 sec with an A100 on Replicate +- TBD with an H100 (@NVIDIA?) The flax model and code for converting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax). diff --git a/setup.py b/setup.py index f5510ab..fdbaa98 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='min-dalle', description = 'min(DALL·E)', long_description=(Path(__file__).parent / "README.rst").read_text(), - version='0.2.16', + version='0.2.17', author='Brett Kuprel', author_email='brkuprel@gmail.com', url='https://github.com/kuprel/min-dalle',