control top_k value

This commit is contained in:
Brett Kuprel
2022-07-05 17:23:05 -04:00
parent d64acb484c
commit 89a125b4b9
4 changed files with 13 additions and 6 deletions

View File

@@ -140,6 +140,7 @@ class DalleBartDecoder(nn.Module):
def decode_step(
self,
log2_k: int,
log2_supercondition_factor: int,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
@@ -170,7 +171,7 @@ class DalleBartDecoder(nn.Module):
logits[image_count:, -1] * a
)
top_logits, _ = logits.topk(50, dim=-1)
top_logits, _ = logits.topk(2 ** log2_k, dim=-1)
probs = torch.where(
logits < top_logits[:, [-1]],
self.zero_prob,
@@ -182,6 +183,7 @@ class DalleBartDecoder(nn.Module):
def decode_row(
self,
row_index: int,
log2_k: int,
log2_supercondition_factor: int,
encoder_state: FloatTensor,
attention_mask: BoolTensor,
@@ -191,6 +193,7 @@ class DalleBartDecoder(nn.Module):
for col_index in range(16):
i = 16 * row_index + col_index
probs, attention_state = self.decode_step(
log2_k = log2_k,
log2_supercondition_factor = log2_supercondition_factor,
attention_mask = attention_mask,
encoder_state = encoder_state,