diff --git a/README.md b/README.md
index 9bc4b10..08ea63e 100644
--- a/README.md
+++ b/README.md
@@ -29,53 +29,46 @@ Load the model parameters once and reuse the model to generate multiple images.
```python
from min_dalle import MinDalle
-model = MinDalle(is_mega=True, models_root='./pretrained')
+model = MinDalle(
+ is_mega=True,
+ is_reusable=True,
+ models_root='./pretrained'
+)
```
The required models will be downloaded to `models_root` if they are not already there. Once everything has finished initializing, call `generate_image` with some text as many times as you want.
```python
-text = 'Dali painting of WALL·E'
-image = model.generate_image(text, grid_size=4)
+image = model.generate_image(
+ 'Dali painting of WALL·E',
+ seed=-1,
+ grid_size=4,
+ log2_supercondition_factor=3
+)
display(image)
```
-```python
-text = 'Rusty Iron Man suit found abandoned in the woods being reclaimed by nature'
-image = model.generate_image(text, grid_size=3)
-display(image)
-```
-
+Use a positive `seed` for reproducible results. Higher values for `log2_supercondition_factor` result in better agreement with the text but a narrower variety of generated images.
+
+If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as it the model is decoding. The detokenizer adds a slight delay for each intermediate image.
```python
-text = 'court sketch of godzilla on trial'
-image = model.generate_image(text, grid_size=3)
-display(image)
-```
-
+image_stream = model.generate_image_stream(
+ text='Dali painting of WALL·E',
+ seed=-1,
+ grid_size=3,
+ log2_mid_count=3,
+ log2_supercondition_factor=3
+)
-```python
-text = 'a funeral at Whole Foods'
-image = model.generate_image(text, grid_size=3)
-display(image)
+is_first = True
+for image in image_stream:
+ display_image = display if is_first else update_display
+ display_image(image, display_id=1)
+ is_first = False
```
-
-
-```python
-text = 'Jesus turning water into wine on Americas Got Talent'
-image = model.generate_image(text, grid_size=3)
-display(image)
-```
-
-
-```python
-text = 'cctv footage of Yoda robbing a liquor store'
-image = model.generate_image(text, grid_size=3)
-display(image)
-```
-
-
+
### Command Line
@@ -85,8 +78,3 @@ Use `image_from_text.py` to generate images from the command line.
$ python image_from_text.py --text='artificial intelligence' --no-mega
```
-
-```bash
-$ python image_from_text.py --text='trail cam footage of gollum eating watermelon' --mega --grid-size=3
-```
-
diff --git a/examples/dalle_walle_animated.gif b/examples/dalle_walle_animated.gif
new file mode 100644
index 0000000..abb1579
Binary files /dev/null and b/examples/dalle_walle_animated.gif differ