updated colab
This commit is contained in:
parent
8ea0482d03
commit
6a068651e5
17
README.md
17
README.md
|
@ -1,22 +1,19 @@
|
|||
# min(DALL·E)
|
||||
|
||||
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min(DALL·E).ipynb)
|
||||
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
|
||||
|
||||
This is a minimal implementation of [DALL·E Mini](https://github.com/borisdayma/dalle-mini) in both Flax and PyTorch
|
||||
|
||||
### Setup
|
||||
|
||||
Run `sh setup.sh` to install dependencies and download pretrained models. The only required dependencies are `flax` and `torch`. In the bash script, GitHub LFS is used to download the VQGan detokenizer and the Weight & Biases python package is used to download the DALL·E Mini and DALL·E Mega transformer models. These models can also be downloaded manually:
|
||||
Run `sh setup.sh` to install dependencies and download pretrained models. The only required dependencies are `flax` and `torch`. In the bash script, GitHub LFS is used to download the VQGan detokenizer and the Weight & Biases python package is used to download the DALL·E Mini and DALL·E Mega transformer models. These models can also be downloaded manually:
|
||||
[VQGan](https://huggingface.co/dalle-mini/vqgan_imagenet_f16_16384),
|
||||
[DALL·E Mini](https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mini-1/v0/files),
|
||||
[DALL·E Mega](https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mega-1-fp16/v14/files)
|
||||
|
||||
VQGan: https://huggingface.co/dalle-mini/vqgan_imagenet_f16_16384
|
||||
### Usage
|
||||
|
||||
DALL·E Mini: https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mini-1/v0/files
|
||||
|
||||
DALL·E Mega: https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mega-1-fp16/v14/files
|
||||
|
||||
### Run
|
||||
|
||||
Here are some examples
|
||||
Use the command line python script `image_from_text.py` to generate images. Here are some examples:
|
||||
|
||||
```
|
||||
python image_from_text.py --seed=7 --text='alien life'
|
||||
|
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user