generate_image_stream

This commit is contained in:
Brett Kuprel
2022-07-04 20:02:33 -04:00
parent cf5b116284
commit 5f4815775b
4 changed files with 32 additions and 56 deletions

View File

@@ -5,7 +5,7 @@ from torch import LongTensor, FloatTensor
import torch
import json
import requests
from typing import Callable, Tuple
from typing import Callable, Tuple, Iterator
torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
@@ -159,16 +159,14 @@ class MinDalle:
return image
def generate_image_tokens(
def generate_image_stream(
self,
text: str,
seed: int,
grid_size: int,
row_count: int,
log2_mid_count: int = 0,
handle_intermediate_image: Callable[[int, Image.Image], None] = None,
is_verbose: bool = False
) -> LongTensor:
) -> Iterator[Image.Image]:
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
if is_verbose: print("text tokens", tokens)
@@ -196,6 +194,7 @@ class MinDalle:
)
)
row_count = 16
for row_index in range(row_count):
if is_verbose:
print('sampling row {} of {}'.format(row_index + 1, row_count))
@@ -206,13 +205,10 @@ class MinDalle:
attention_state,
image_tokens
)
if handle_intermediate_image is not None and log2_mid_count > 0:
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
tokens = image_tokens[:, 1:]
image = self.image_from_tokens(grid_size, tokens, is_verbose)
handle_intermediate_image(row_index, image)
return image_tokens[:, 1:]
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
tokens = image_tokens[:, 1:]
image = self.image_from_tokens(grid_size, tokens, is_verbose)
yield image
def generate_image(
@@ -220,17 +216,14 @@ class MinDalle:
text: str,
seed: int = -1,
grid_size: int = 1,
log2_mid_count: int = None,
handle_intermediate_image: Callable[[Image.Image], None] = None,
is_verbose: bool = False
) -> Image.Image:
image_tokens = self.generate_image_tokens(
text,
seed,
grid_size,
row_count = 16,
log2_mid_count = log2_mid_count,
handle_intermediate_image = handle_intermediate_image,
is_verbose = is_verbose
log2_mid_count = 0
image_stream = self.generate_image_stream(
text,
seed,
grid_size,
log2_mid_count,
is_verbose
)
return self.image_from_tokens(grid_size, image_tokens, is_verbose)
return next(image_stream)