faster decoder self attention
This commit is contained in:
parent
a79d30f718
commit
377d15cb16
2
min_dalle.ipynb
vendored
2
min_dalle.ipynb
vendored
|
@ -178,8 +178,8 @@
|
||||||
"%%time\n",
|
"%%time\n",
|
||||||
"\n",
|
"\n",
|
||||||
"text = \"Dali painting of WALL·E\" #@param {type:\"string\"}\n",
|
"text = \"Dali painting of WALL·E\" #@param {type:\"string\"}\n",
|
||||||
"seed = 0 #@param {type:\"integer\"}\n",
|
|
||||||
"grid_size = 2 #@param {type:\"integer\"}\n",
|
"grid_size = 2 #@param {type:\"integer\"}\n",
|
||||||
|
"seed = -1 #@param {type:\"integer\"}\n",
|
||||||
"\n",
|
"\n",
|
||||||
"display(model.generate_image(text, seed, grid_size))"
|
"display(model.generate_image(text, seed, grid_size))"
|
||||||
]
|
]
|
||||||
|
|
|
@ -165,6 +165,7 @@ class MinDalle:
|
||||||
if self.is_verbose: print("encoding text tokens")
|
if self.is_verbose: print("encoding text tokens")
|
||||||
encoder_state = self.encoder.forward(text_tokens)
|
encoder_state = self.encoder.forward(text_tokens)
|
||||||
if not self.is_reusable: del self.encoder
|
if not self.is_reusable: del self.encoder
|
||||||
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||||
|
|
||||||
if not self.is_reusable: self.init_decoder()
|
if not self.is_reusable: self.init_decoder()
|
||||||
if self.is_verbose: print("sampling image tokens")
|
if self.is_verbose: print("sampling image tokens")
|
||||||
|
@ -175,7 +176,6 @@ class MinDalle:
|
||||||
encoder_state
|
encoder_state
|
||||||
)
|
)
|
||||||
if not self.is_reusable: del self.decoder
|
if not self.is_reusable: del self.decoder
|
||||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
|
||||||
return image_tokens
|
return image_tokens
|
||||||
|
|
||||||
|
|
||||||
|
@ -187,6 +187,7 @@ class MinDalle:
|
||||||
) -> Image.Image:
|
) -> Image.Image:
|
||||||
image_count = grid_size ** 2
|
image_count = grid_size ** 2
|
||||||
image_tokens = self.generate_image_tokens(text, seed, image_count)
|
image_tokens = self.generate_image_tokens(text, seed, image_count)
|
||||||
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||||
if not self.is_reusable: self.init_detokenizer()
|
if not self.is_reusable: self.init_detokenizer()
|
||||||
if self.is_verbose: print("detokenizing image")
|
if self.is_verbose: print("detokenizing image")
|
||||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||||
|
@ -194,4 +195,5 @@ class MinDalle:
|
||||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||||
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||||
return image
|
return image
|
|
@ -20,25 +20,28 @@ class DecoderCrossAttention(AttentionBase):
|
||||||
|
|
||||||
|
|
||||||
class DecoderSelfAttention(AttentionBase):
|
class DecoderSelfAttention(AttentionBase):
|
||||||
|
def __init__(self, head_count: int, embed_count: int):
|
||||||
|
super().__init__(head_count, embed_count)
|
||||||
|
token_indices = torch.arange(256)
|
||||||
|
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||||
|
self.token_indices = token_indices
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
decoder_state: FloatTensor,
|
decoder_state: FloatTensor,
|
||||||
attention_state: FloatTensor,
|
attention_state: FloatTensor,
|
||||||
attention_mask: BoolTensor,
|
token_index: LongTensor
|
||||||
token_mask: BoolTensor
|
|
||||||
) -> Tuple[FloatTensor, FloatTensor]:
|
) -> Tuple[FloatTensor, FloatTensor]:
|
||||||
keys = self.k_proj.forward(decoder_state)
|
keys = self.k_proj.forward(decoder_state)
|
||||||
values = self.v_proj.forward(decoder_state)
|
values = self.v_proj.forward(decoder_state)
|
||||||
queries = self.q_proj.forward(decoder_state)
|
queries = self.q_proj.forward(decoder_state)
|
||||||
attention_state = torch.where(
|
attn_mask = self.token_indices < token_index + 1
|
||||||
token_mask[None, :, None],
|
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
|
||||||
torch.cat([keys, values]),
|
attention_state[:, token_index] = torch.cat([keys, values])
|
||||||
attention_state
|
|
||||||
)
|
|
||||||
batch_count = decoder_state.shape[0]
|
batch_count = decoder_state.shape[0]
|
||||||
keys = attention_state[:batch_count]
|
keys = attention_state[:batch_count]
|
||||||
values = attention_state[batch_count:]
|
values = attention_state[batch_count:]
|
||||||
decoder_state = super().forward(keys, values, queries, attention_mask)
|
decoder_state = super().forward(keys, values, queries, attn_mask)
|
||||||
return decoder_state, attention_state
|
return decoder_state, attention_state
|
||||||
|
|
||||||
|
|
||||||
|
@ -60,9 +63,6 @@ class DecoderLayer(nn.Module):
|
||||||
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||||
self.glu = GLU(embed_count, glu_embed_count)
|
self.glu = GLU(embed_count, glu_embed_count)
|
||||||
|
|
||||||
self.token_indices = torch.arange(self.image_token_count)
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
self.token_indices = self.token_indices.cuda()
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
|
@ -75,14 +75,10 @@ class DecoderLayer(nn.Module):
|
||||||
# Self Attention
|
# Self Attention
|
||||||
residual = decoder_state
|
residual = decoder_state
|
||||||
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
||||||
self_attn_mask = self.token_indices < token_index + 1
|
|
||||||
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
|
||||||
token_mask = self.token_indices == token_index
|
|
||||||
decoder_state, attention_state = self.self_attn.forward(
|
decoder_state, attention_state = self.self_attn.forward(
|
||||||
decoder_state,
|
decoder_state,
|
||||||
attention_state,
|
attention_state,
|
||||||
self_attn_mask,
|
token_index
|
||||||
token_mask
|
|
||||||
)
|
)
|
||||||
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
||||||
decoder_state = residual + decoder_state
|
decoder_state = residual + decoder_state
|
||||||
|
|
|
@ -13,16 +13,16 @@ class Predictor(BasePredictor):
|
||||||
description='Text',
|
description='Text',
|
||||||
default='Dali painting of WALL·E'
|
default='Dali painting of WALL·E'
|
||||||
),
|
),
|
||||||
seed: int = Input(
|
|
||||||
description='Set the seed to a positive number for reproducible results',
|
|
||||||
default=-1
|
|
||||||
),
|
|
||||||
grid_size: int = Input(
|
grid_size: int = Input(
|
||||||
description='Size of the image grid',
|
description='Size of the image grid',
|
||||||
ge=1,
|
ge=1,
|
||||||
le=4,
|
le=4,
|
||||||
default=4
|
default=4
|
||||||
)
|
),
|
||||||
|
seed: int = Input(
|
||||||
|
description='Set the seed to a positive number for reproducible results',
|
||||||
|
default=-1
|
||||||
|
),
|
||||||
) -> Path:
|
) -> Path:
|
||||||
image = self.model.generate_image(text, seed, grid_size=grid_size)
|
image = self.model.generate_image(text, seed, grid_size=grid_size)
|
||||||
out_path = Path(tempfile.mkdtemp()) / 'output.jpg'
|
out_path = Path(tempfile.mkdtemp()) / 'output.jpg'
|
||||||
|
|
Loading…
Reference in New Issue
Block a user