v0.2.0, MinDalleTorch -> MinDalle, breaking change

This commit is contained in:
Brett Kuprel 2022-07-01 19:44:24 -04:00
parent 2080e596c3
commit 35e97768a5
10 changed files with 43 additions and 45 deletions

6
README.md vendored
View File

@ -22,12 +22,12 @@ $ pip install min-dalle
### Python
To load a model once and generate multiple times, first initialize `MinDalleTorch`.
To load a model once and generate multiple times, first initialize `MinDalle`.
```python
from min_dalle import MinDalleTorch
from min_dalle import MinDalle
model = MinDalleTorch(
model = MinDalle(
is_mega=True,
is_reusable=True,
models_root='./pretrained'

View File

@ -2,14 +2,15 @@ import argparse
import os
from PIL import Image
from min_dalle import MinDalleTorch
from min_dalle import MinDalle
parser = argparse.ArgumentParser()
parser.add_argument('--mega', action='store_true')
parser.add_argument('--no-mega', dest='mega', action='store_false')
parser.set_defaults(mega=False)
parser.add_argument('--text', type=str, default='alien life')
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument('--image_path', type=str, default='generated')
parser.add_argument('--token_count', type=int, default=256) # for debugging
@ -39,7 +40,7 @@ def generate_image(
image_path: str,
token_count: int
):
model = MinDalleTorch(
model = MinDalle(
is_mega=is_mega,
models_root='pretrained',
is_reusable=False,

4
min_dalle.ipynb vendored
View File

@ -77,9 +77,9 @@
}
],
"source": [
"from min_dalle import MinDalleTorch\n",
"from min_dalle import MinDalle\n",
"\n",
"model = MinDalleTorch(is_mega=True, is_reusable=True)"
"model = MinDalle(is_mega=True, is_reusable=True)"
]
},
{

View File

@ -1 +1 @@
from .min_dalle_torch import MinDalleTorch
from .min_dalle import MinDalle

View File

@ -1,6 +1,5 @@
import os
from PIL import Image
from typing import Dict
import numpy
from torch import LongTensor
import torch
@ -10,16 +9,13 @@ import random
torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
from .text_tokenizer import TextTokenizer
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
from .text_tokenizer import TextTokenizer
from .models import (
DalleBartEncoderTorch,
DalleBartDecoderTorch,
VQGanDetokenizer
)
class MinDalleTorch:
class MinDalle:
def __init__(
self,
is_mega: bool,
@ -104,7 +100,7 @@ class MinDalleTorch:
is_downloaded = os.path.exists(self.encoder_params_path)
if not is_downloaded: self.download_encoder()
print("initializing DalleBartEncoderTorch")
self.encoder = DalleBartEncoderTorch(
self.encoder = DalleBartEncoder(
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
@ -122,7 +118,7 @@ class MinDalleTorch:
is_downloaded = os.path.exists(self.decoder_params_path)
if not is_downloaded: self.download_decoder()
print("initializing DalleBartDecoderTorch")
self.decoder = DalleBartDecoderTorch(
self.decoder = DalleBartDecoder(
sample_token_count = self.sample_token_count,
image_token_count = self.image_token_count,
image_vocab_count = self.image_vocab_count,

View File

@ -1,3 +1,3 @@
from .dalle_bart_encoder_torch import DalleBartEncoderTorch
from .dalle_bart_decoder_torch import DalleBartDecoderTorch
from .dalle_bart_encoder import DalleBartEncoder
from .dalle_bart_decoder import DalleBartDecoder
from .vqgan_detokenizer import VQGanDetokenizer

View File

@ -3,10 +3,10 @@ import torch
from torch import LongTensor, nn, FloatTensor, BoolTensor
torch.set_grad_enabled(False)
from .dalle_bart_encoder_torch import GLUTorch, AttentionTorch
from .dalle_bart_encoder import GLU, AttentionBase
class DecoderCrossAttentionTorch(AttentionTorch):
class DecoderCrossAttention(AttentionBase):
def forward(
self,
decoder_state: FloatTensor,
@ -19,7 +19,7 @@ class DecoderCrossAttentionTorch(AttentionTorch):
return super().forward(keys, values, queries, attention_mask)
class DecoderSelfAttentionTorch(AttentionTorch):
class DecoderSelfAttention(AttentionBase):
def forward(
self,
decoder_state: FloatTensor,
@ -42,7 +42,7 @@ class DecoderSelfAttentionTorch(AttentionTorch):
return decoder_state, attention_state
class DecoderLayerTorch(nn.Module):
class DecoderLayer(nn.Module):
def __init__(
self,
image_token_count: int,
@ -53,12 +53,12 @@ class DecoderLayerTorch(nn.Module):
super().__init__()
self.image_token_count = image_token_count
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
self.self_attn = DecoderSelfAttentionTorch(head_count, embed_count)
self.self_attn = DecoderSelfAttention(head_count, embed_count)
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.encoder_attn = DecoderCrossAttentionTorch(head_count, embed_count)
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.glu = GLUTorch(embed_count, glu_embed_count)
self.glu = GLU(embed_count, glu_embed_count)
self.token_indices = torch.arange(self.image_token_count)
if torch.cuda.is_available():
@ -106,7 +106,7 @@ class DecoderLayerTorch(nn.Module):
return decoder_state, attention_state
class DalleBartDecoderTorch(nn.Module):
class DalleBartDecoder(nn.Module):
def __init__(
self,
image_vocab_count: int,
@ -126,8 +126,8 @@ class DalleBartDecoderTorch(nn.Module):
self.image_token_count = image_token_count
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
self.embed_positions = nn.Embedding(image_token_count, embed_count)
self.layers: List[DecoderLayerTorch] = nn.ModuleList([
DecoderLayerTorch(
self.layers: List[DecoderLayer] = nn.ModuleList([
DecoderLayer(
image_token_count,
attention_head_count,
embed_count,

View File

@ -4,7 +4,7 @@ from torch import nn, BoolTensor, FloatTensor, LongTensor
torch.set_grad_enabled(False)
class GLUTorch(nn.Module):
class GLU(nn.Module):
def __init__(self, count_in_out, count_middle):
super().__init__()
self.gelu = nn.GELU()
@ -24,7 +24,7 @@ class GLUTorch(nn.Module):
return z
class AttentionTorch(nn.Module):
class AttentionBase(nn.Module):
def __init__(self, head_count: int, embed_count: int):
super().__init__()
self.head_count = head_count
@ -72,7 +72,7 @@ class AttentionTorch(nn.Module):
return attention_output
class EncoderSelfAttentionTorch(AttentionTorch):
class EncoderSelfAttention(AttentionBase):
def forward(
self,
encoder_state: FloatTensor,
@ -84,13 +84,13 @@ class EncoderSelfAttentionTorch(AttentionTorch):
return super().forward(keys, values, queries, attention_mask)
class EncoderLayerTorch(nn.Module):
class EncoderLayer(nn.Module):
def __init__(self, embed_count: int, head_count: int, glu_embed_count: int):
super().__init__()
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
self.self_attn = EncoderSelfAttentionTorch(head_count, embed_count)
self.self_attn = EncoderSelfAttention(head_count, embed_count)
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
self.glu = GLUTorch(embed_count, glu_embed_count)
self.glu = GLU(embed_count, glu_embed_count)
def forward(
self,
@ -108,7 +108,7 @@ class EncoderLayerTorch(nn.Module):
return encoder_state
class DalleBartEncoderTorch(nn.Module):
class DalleBartEncoder(nn.Module):
def __init__(
self,
layer_count: int,
@ -121,8 +121,8 @@ class DalleBartEncoderTorch(nn.Module):
super().__init__()
self.embed_tokens = nn.Embedding(text_vocab_count, embed_count)
self.embed_positions = nn.Embedding(text_token_count, embed_count)
self.layers: List[EncoderLayerTorch] = nn.ModuleList([
EncoderLayerTorch(
self.layers: List[EncoderLayer] = nn.ModuleList([
EncoderLayer(
embed_count = embed_count,
head_count = attention_head_count,
glu_embed_count = glu_embed_count

View File

@ -1,11 +1,11 @@
import tempfile
from cog import BasePredictor, Path, Input
from min_dalle.min_dalle_torch import MinDalleTorch
from min_dalle import MinDalle
class Predictor(BasePredictor):
def setup(self):
self.model = MinDalleTorch(is_mega=True)
self.model = MinDalle(is_mega=True)
def predict(
self,

View File

@ -3,9 +3,9 @@ import setuptools
setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
version='0.1.4',
version='0.2.0',
author='Brett Kuprel',
author_email = 'brkuprel@gmail.com',
author_email='brkuprel@gmail.com',
packages=[
'min_dalle',
'min_dalle.models'
@ -18,6 +18,7 @@ setuptools.setup(
keywords = [
'artificial intelligence',
'deep learning',
'text to image'
'text-to-image',
'pytorch'
]
)