generate_images_stream and generate_images
This commit is contained in:
parent
b17bea11b6
commit
2cac9220b5
102
README.rst
vendored
102
README.rst
vendored
|
@ -1,102 +0,0 @@
|
|||
min(DALL·E)
|
||||
===========
|
||||
|
||||
|Colab| |Replicate| |Discord|
|
||||
|
||||
This is a fast, minimal port of Boris Dayma’s `DALL·E
|
||||
Mega <https://github.com/borisdayma/dalle-mini>`__. It has been stripped
|
||||
down for inference and converted to PyTorch. The only third party
|
||||
dependencies are numpy, requests, pillow and torch.
|
||||
|
||||
To generate a 4x4 grid of DALL·E Mega images it takes: - 89 sec with a
|
||||
T4 in Colab - 48 sec with a P100 in Colab - 14 sec with an A100 on
|
||||
Replicate
|
||||
|
||||
The flax model and code for converting it to torch can be found
|
||||
`here <https://github.com/kuprel/min-dalle-flax>`__.
|
||||
|
||||
Install
|
||||
-------
|
||||
|
||||
.. code:: bash
|
||||
|
||||
$ pip install min-dalle
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
Load the model parameters once and reuse the model to generate multiple
|
||||
images.
|
||||
|
||||
.. code:: python
|
||||
|
||||
from min_dalle import MinDalle
|
||||
|
||||
model = MinDalle(
|
||||
is_mega=True,
|
||||
is_reusable=True,
|
||||
models_root='./pretrained'
|
||||
)
|
||||
|
||||
The required models will be downloaded to ``models_root`` if they are
|
||||
not already there. Once everything has finished initializing, call
|
||||
``generate_image`` with some text as many times as you want. Use a
|
||||
positive ``seed`` for reproducible results. Higher values for
|
||||
``log2_supercondition_factor`` result in better agreement with the text
|
||||
but a narrower variety of generated images. Every image token is sampled
|
||||
from the top-:math:`k` most probable tokens.
|
||||
|
||||
.. code:: python
|
||||
|
||||
image = model.generate_image(
|
||||
text='Nuclear explosion broccoli',
|
||||
seed=-1,
|
||||
grid_size=4,
|
||||
log2_k=6,
|
||||
log2_supercondition_factor=5,
|
||||
is_verbose=False
|
||||
)
|
||||
|
||||
display(image)
|
||||
|
||||
Interactive
|
||||
~~~~~~~~~~~
|
||||
|
||||
If the model is being used interactively (e.g. in a notebook)
|
||||
``generate_image_stream`` can be used to generate a stream of images as
|
||||
the model is decoding. The detokenizer adds a slight delay for each
|
||||
image. Setting ``log2_mid_count`` to 3 results in a total of
|
||||
``2 ** 3 = 8`` generated images. The only valid values for
|
||||
``log2_mid_count`` are 0, 1, 2, 3, and 4. This is implemented in the
|
||||
colab.
|
||||
|
||||
.. code:: python
|
||||
|
||||
image_stream = model.generate_image_stream(
|
||||
text='Dali painting of WALL·E',
|
||||
seed=-1,
|
||||
grid_size=3,
|
||||
log2_mid_count=3,
|
||||
log2_k=6,
|
||||
log2_supercondition_factor=3,
|
||||
is_verbose=False
|
||||
)
|
||||
|
||||
for image in image_stream:
|
||||
display(image)
|
||||
|
||||
Command Line
|
||||
~~~~~~~~~~~~
|
||||
|
||||
Use ``image_from_text.py`` to generate images from the command line.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
$ python image_from_text.py --text='artificial intelligence' --no-mega
|
||||
|
||||
.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb
|
||||
.. |Replicate| image:: https://replicate.com/kuprel/min-dalle/badge
|
||||
:target: https://replicate.com/kuprel/min-dalle
|
||||
.. |Discord| image:: https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white
|
||||
:target: https://discord.com/channels/823813159592001537/912729332311556136
|
2
cog.yaml
vendored
2
cog.yaml
vendored
|
@ -6,7 +6,7 @@ build:
|
|||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "min-dalle==0.2.36"
|
||||
- "min-dalle==0.3.1"
|
||||
run:
|
||||
- pip install torch==1.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
import os
|
||||
from PIL import Image
|
||||
from matplotlib.pyplot import grid
|
||||
import numpy
|
||||
from torch import LongTensor
|
||||
from math import sqrt
|
||||
import torch
|
||||
import json
|
||||
import requests
|
||||
|
@ -142,25 +144,29 @@ class MinDalle:
|
|||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||
|
||||
|
||||
def image_from_tokens(
|
||||
def images_from_tokens(
|
||||
self,
|
||||
grid_size: int,
|
||||
image_tokens: LongTensor,
|
||||
is_verbose: bool = False
|
||||
) -> Image.Image:
|
||||
) -> LongTensor:
|
||||
if not self.is_reusable: del self.decoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
return images
|
||||
|
||||
|
||||
def grid_from_images(self, images: LongTensor) -> Image.Image:
|
||||
grid_size = int(sqrt(images.shape[0]))
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
return image
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
def generate_images_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
|
@ -169,7 +175,7 @@ class MinDalle:
|
|||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[Image.Image]:
|
||||
) -> Iterator[LongTensor]:
|
||||
assert(log2_mid_count in range(5))
|
||||
if is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||
|
@ -219,8 +225,53 @@ class MinDalle:
|
|||
with torch.cuda.amp.autocast(dtype=torch.float32):
|
||||
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||
yield image
|
||||
images = self.images_from_tokens(tokens, is_verbose)
|
||||
yield images
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
grid_size: int,
|
||||
log2_mid_count: int,
|
||||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[Image.Image]:
|
||||
images_stream = self.generate_images_stream(
|
||||
text,
|
||||
seed,
|
||||
grid_size,
|
||||
log2_mid_count,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
is_verbose
|
||||
)
|
||||
for images in images_stream:
|
||||
yield self.grid_from_images(images)
|
||||
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
text: str,
|
||||
seed: int = -1,
|
||||
grid_size: int = 1,
|
||||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> LongTensor:
|
||||
log2_mid_count = 0
|
||||
images_stream = self.generate_images_stream(
|
||||
text,
|
||||
seed,
|
||||
grid_size,
|
||||
log2_mid_count,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
is_verbose
|
||||
)
|
||||
return next(images_stream)
|
||||
|
||||
|
||||
def generate_image(
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from min_dalle import MinDalle
|
||||
import tempfile
|
||||
import torch
|
||||
from typing import Iterator
|
||||
from cog import BasePredictor, Path, Input
|
||||
|
||||
|
@ -53,5 +54,6 @@ class ReplicatePredictor(BasePredictor):
|
|||
except:
|
||||
print("An error occured, deleting model")
|
||||
del self.model
|
||||
torch.cuda.empty_cache()
|
||||
self.setup()
|
||||
raise Exception("There was an error, please try again")
|
2
setup.py
2
setup.py
|
@ -5,7 +5,7 @@ setuptools.setup(
|
|||
name='min-dalle',
|
||||
description = 'min(DALL·E)',
|
||||
# long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||
version='0.2.36',
|
||||
version='0.3.1',
|
||||
author='Brett Kuprel',
|
||||
author_email='brkuprel@gmail.com',
|
||||
url='https://github.com/kuprel/min-dalle',
|
||||
|
|
Loading…
Reference in New Issue
Block a user