generate_images_stream and generate_images

This commit is contained in:
Brett Kuprel 2022-07-07 17:03:47 -04:00
parent b17bea11b6
commit 2cac9220b5
5 changed files with 62 additions and 111 deletions

102
README.rst vendored
View File

@ -1,102 +0,0 @@
min(DALL·E)
===========
|Colab|   |Replicate|   |Discord|
This is a fast, minimal port of Boris Daymas `DALL·E
Mega <https://github.com/borisdayma/dalle-mini>`__. It has been stripped
down for inference and converted to PyTorch. The only third party
dependencies are numpy, requests, pillow and torch.
To generate a 4x4 grid of DALL·E Mega images it takes: - 89 sec with a
T4 in Colab - 48 sec with a P100 in Colab - 14 sec with an A100 on
Replicate
The flax model and code for converting it to torch can be found
`here <https://github.com/kuprel/min-dalle-flax>`__.
Install
-------
.. code:: bash
$ pip install min-dalle
Usage
-----
Load the model parameters once and reuse the model to generate multiple
images.
.. code:: python
from min_dalle import MinDalle
model = MinDalle(
is_mega=True,
is_reusable=True,
models_root='./pretrained'
)
The required models will be downloaded to ``models_root`` if they are
not already there. Once everything has finished initializing, call
``generate_image`` with some text as many times as you want. Use a
positive ``seed`` for reproducible results. Higher values for
``log2_supercondition_factor`` result in better agreement with the text
but a narrower variety of generated images. Every image token is sampled
from the top-:math:`k` most probable tokens.
.. code:: python
image = model.generate_image(
text='Nuclear explosion broccoli',
seed=-1,
grid_size=4,
log2_k=6,
log2_supercondition_factor=5,
is_verbose=False
)
display(image)
Interactive
~~~~~~~~~~~
If the model is being used interactively (e.g. in a notebook)
``generate_image_stream`` can be used to generate a stream of images as
the model is decoding. The detokenizer adds a slight delay for each
image. Setting ``log2_mid_count`` to 3 results in a total of
``2 ** 3 = 8`` generated images. The only valid values for
``log2_mid_count`` are 0, 1, 2, 3, and 4. This is implemented in the
colab.
.. code:: python
image_stream = model.generate_image_stream(
text='Dali painting of WALL·E',
seed=-1,
grid_size=3,
log2_mid_count=3,
log2_k=6,
log2_supercondition_factor=3,
is_verbose=False
)
for image in image_stream:
display(image)
Command Line
~~~~~~~~~~~~
Use ``image_from_text.py`` to generate images from the command line.
.. code:: bash
$ python image_from_text.py --text='artificial intelligence' --no-mega
.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb
.. |Replicate| image:: https://replicate.com/kuprel/min-dalle/badge
:target: https://replicate.com/kuprel/min-dalle
.. |Discord| image:: https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white
:target: https://discord.com/channels/823813159592001537/912729332311556136

2
cog.yaml vendored
View File

@ -6,7 +6,7 @@ build:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "min-dalle==0.2.36"
- "min-dalle==0.3.1"
run:
- pip install torch==1.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html

View File

@ -1,7 +1,9 @@
import os
from PIL import Image
from matplotlib.pyplot import grid
import numpy
from torch import LongTensor
from math import sqrt
import torch
import json
import requests
@ -142,25 +144,29 @@ class MinDalle:
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
def image_from_tokens(
def images_from_tokens(
self,
grid_size: int,
image_tokens: LongTensor,
is_verbose: bool = False
) -> Image.Image:
) -> LongTensor:
if not self.is_reusable: del self.decoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
if not self.is_reusable: del self.detokenizer
return images
def grid_from_images(self, images: LongTensor) -> Image.Image:
grid_size = int(sqrt(images.shape[0]))
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
image = Image.fromarray(image.to('cpu').detach().numpy())
return image
def generate_image_stream(
def generate_images_stream(
self,
text: str,
seed: int,
@ -169,7 +175,7 @@ class MinDalle:
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[Image.Image]:
) -> Iterator[LongTensor]:
assert(log2_mid_count in range(5))
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
@ -219,8 +225,53 @@ class MinDalle:
with torch.cuda.amp.autocast(dtype=torch.float32):
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
tokens = image_tokens[:, 1:]
image = self.image_from_tokens(grid_size, tokens, is_verbose)
yield image
images = self.images_from_tokens(tokens, is_verbose)
yield images
def generate_image_stream(
self,
text: str,
seed: int,
grid_size: int,
log2_mid_count: int,
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[Image.Image]:
images_stream = self.generate_images_stream(
text,
seed,
grid_size,
log2_mid_count,
log2_k,
log2_supercondition_factor,
is_verbose
)
for images in images_stream:
yield self.grid_from_images(images)
def generate_images(
self,
text: str,
seed: int = -1,
grid_size: int = 1,
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> LongTensor:
log2_mid_count = 0
images_stream = self.generate_images_stream(
text,
seed,
grid_size,
log2_mid_count,
log2_k,
log2_supercondition_factor,
is_verbose
)
return next(images_stream)
def generate_image(

View File

@ -1,5 +1,6 @@
from min_dalle import MinDalle
import tempfile
import torch
from typing import Iterator
from cog import BasePredictor, Path, Input
@ -53,5 +54,6 @@ class ReplicatePredictor(BasePredictor):
except:
print("An error occured, deleting model")
del self.model
torch.cuda.empty_cache()
self.setup()
raise Exception("There was an error, please try again")

View File

@ -5,7 +5,7 @@ setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
# long_description=(Path(__file__).parent / "README.rst").read_text(),
version='0.2.36',
version='0.3.1',
author='Brett Kuprel',
author_email='brkuprel@gmail.com',
url='https://github.com/kuprel/min-dalle',