generate_images_stream and generate_images
This commit is contained in:
@@ -1,7 +1,9 @@
|
||||
import os
|
||||
from PIL import Image
|
||||
from matplotlib.pyplot import grid
|
||||
import numpy
|
||||
from torch import LongTensor
|
||||
from math import sqrt
|
||||
import torch
|
||||
import json
|
||||
import requests
|
||||
@@ -142,25 +144,29 @@ class MinDalle:
|
||||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||
|
||||
|
||||
def image_from_tokens(
|
||||
def images_from_tokens(
|
||||
self,
|
||||
grid_size: int,
|
||||
image_tokens: LongTensor,
|
||||
is_verbose: bool = False
|
||||
) -> Image.Image:
|
||||
) -> LongTensor:
|
||||
if not self.is_reusable: del self.decoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
return images
|
||||
|
||||
|
||||
def grid_from_images(self, images: LongTensor) -> Image.Image:
|
||||
grid_size = int(sqrt(images.shape[0]))
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
return image
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
def generate_images_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
@@ -169,7 +175,7 @@ class MinDalle:
|
||||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[Image.Image]:
|
||||
) -> Iterator[LongTensor]:
|
||||
assert(log2_mid_count in range(5))
|
||||
if is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||
@@ -219,8 +225,53 @@ class MinDalle:
|
||||
with torch.cuda.amp.autocast(dtype=torch.float32):
|
||||
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||
yield image
|
||||
images = self.images_from_tokens(tokens, is_verbose)
|
||||
yield images
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
grid_size: int,
|
||||
log2_mid_count: int,
|
||||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[Image.Image]:
|
||||
images_stream = self.generate_images_stream(
|
||||
text,
|
||||
seed,
|
||||
grid_size,
|
||||
log2_mid_count,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
is_verbose
|
||||
)
|
||||
for images in images_stream:
|
||||
yield self.grid_from_images(images)
|
||||
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
text: str,
|
||||
seed: int = -1,
|
||||
grid_size: int = 1,
|
||||
log2_k: int = 6,
|
||||
log2_supercondition_factor: int = 3,
|
||||
is_verbose: bool = False
|
||||
) -> LongTensor:
|
||||
log2_mid_count = 0
|
||||
images_stream = self.generate_images_stream(
|
||||
text,
|
||||
seed,
|
||||
grid_size,
|
||||
log2_mid_count,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
is_verbose
|
||||
)
|
||||
return next(images_stream)
|
||||
|
||||
|
||||
def generate_image(
|
||||
|
Reference in New Issue
Block a user