generate_images_stream and generate_images

This commit is contained in:
Brett Kuprel
2022-07-07 17:03:47 -04:00
parent b17bea11b6
commit 2cac9220b5
5 changed files with 62 additions and 111 deletions

View File

@@ -1,7 +1,9 @@
import os
from PIL import Image
from matplotlib.pyplot import grid
import numpy
from torch import LongTensor
from math import sqrt
import torch
import json
import requests
@@ -142,25 +144,29 @@ class MinDalle:
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
def image_from_tokens(
def images_from_tokens(
self,
grid_size: int,
image_tokens: LongTensor,
is_verbose: bool = False
) -> Image.Image:
) -> LongTensor:
if not self.is_reusable: del self.decoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
if not self.is_reusable: del self.detokenizer
return images
def grid_from_images(self, images: LongTensor) -> Image.Image:
grid_size = int(sqrt(images.shape[0]))
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
image = Image.fromarray(image.to('cpu').detach().numpy())
return image
def generate_image_stream(
def generate_images_stream(
self,
text: str,
seed: int,
@@ -169,7 +175,7 @@ class MinDalle:
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[Image.Image]:
) -> Iterator[LongTensor]:
assert(log2_mid_count in range(5))
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
@@ -219,8 +225,53 @@ class MinDalle:
with torch.cuda.amp.autocast(dtype=torch.float32):
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
tokens = image_tokens[:, 1:]
image = self.image_from_tokens(grid_size, tokens, is_verbose)
yield image
images = self.images_from_tokens(tokens, is_verbose)
yield images
def generate_image_stream(
self,
text: str,
seed: int,
grid_size: int,
log2_mid_count: int,
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[Image.Image]:
images_stream = self.generate_images_stream(
text,
seed,
grid_size,
log2_mid_count,
log2_k,
log2_supercondition_factor,
is_verbose
)
for images in images_stream:
yield self.grid_from_images(images)
def generate_images(
self,
text: str,
seed: int = -1,
grid_size: int = 1,
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> LongTensor:
log2_mid_count = 0
images_stream = self.generate_images_stream(
text,
seed,
grid_size,
log2_mid_count,
log2_k,
log2_supercondition_factor,
is_verbose
)
return next(images_stream)
def generate_image(