diff --git a/README.md b/README.md index 826237a..8b8dff2 100644 --- a/README.md +++ b/README.md @@ -13,6 +13,10 @@ To generate a 4x4 grid of DALLĀ·E Mega images it takes: - 48 sec with a P100 in Colab - 13 sec with an A100 on Replicate +Here's a more detailed breakdown on the A100 of total inference time vs number of generated images: +min-dalle +Credit to @technobird22 and his [NeoGen](https://github.com/technobird22/NeoGen) discord bot for the graph + The flax model and code for converting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax). ## Install diff --git a/min_dalle/min_dalle.py b/min_dalle/min_dalle.py index 9b02bba..ca51f1a 100644 --- a/min_dalle/min_dalle.py +++ b/min_dalle/min_dalle.py @@ -186,7 +186,7 @@ class MinDalle: tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose) if len(tokens) > self.text_token_count: tokens = tokens[:self.text_token_count] - if is_verbose: print("text tokens", tokens) + if is_verbose: print("{} text tokens".format(len(tokens)), tokens) text_tokens = numpy.ones((2, 64), dtype=numpy.int32) text_tokens[0, :2] = [tokens[0], tokens[-1]] text_tokens[1, :len(tokens)] = tokens diff --git a/performance_a100.png b/performance_a100.png new file mode 100644 index 0000000..acdfc92 Binary files /dev/null and b/performance_a100.png differ