added grid_size parameter to generate a grid of images
This commit is contained in:
parent
e0386f991c
commit
1eb56737d8
|
@ -11,9 +11,10 @@ parser.add_argument('--no-mega', dest='mega', action='store_false')
|
|||
parser.set_defaults(mega=False)
|
||||
parser.add_argument('--text', type=str, default='alien life')
|
||||
parser.add_argument('--seed', type=int, default=-1)
|
||||
parser.add_argument('--image_path', type=str, default='generated')
|
||||
parser.add_argument('--models_root', type=str, default='pretrained')
|
||||
parser.add_argument('--token_count', type=int, default=256) # for debugging
|
||||
parser.add_argument('--grid-size', type=int, default=1)
|
||||
parser.add_argument('--image-path', type=str, default='generated')
|
||||
parser.add_argument('--models-root', type=str, default='pretrained')
|
||||
parser.add_argument('--token-count', type=int, default=256) # for debugging
|
||||
|
||||
|
||||
def ascii_from_image(image: Image.Image, size: int) -> str:
|
||||
|
@ -38,6 +39,7 @@ def generate_image(
|
|||
is_mega: bool,
|
||||
text: str,
|
||||
seed: int,
|
||||
grid_size: int,
|
||||
image_path: str,
|
||||
models_root: str,
|
||||
token_count: int
|
||||
|
@ -51,10 +53,10 @@ def generate_image(
|
|||
)
|
||||
|
||||
if token_count < 256:
|
||||
image_tokens = model.generate_image_tokens(text, seed)
|
||||
print('image tokens', list(image_tokens.to('cpu').detach().numpy()))
|
||||
image_tokens = model.generate_image_tokens(text, seed, grid_size ** 2)
|
||||
print('image tokens', image_tokens.to('cpu').detach().numpy())
|
||||
else:
|
||||
image = model.generate_image(text, seed)
|
||||
image = model.generate_image(text, seed, grid_size)
|
||||
save_image(image, image_path)
|
||||
print(ascii_from_image(image, size=128))
|
||||
|
||||
|
@ -66,6 +68,7 @@ if __name__ == '__main__':
|
|||
is_mega=args.mega,
|
||||
text=args.text,
|
||||
seed=args.seed,
|
||||
grid_size=args.grid_size,
|
||||
image_path=args.image_path,
|
||||
models_root=args.models_root,
|
||||
token_count=args.token_count
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
from re import I
|
||||
from PIL import Image
|
||||
import numpy
|
||||
from torch import LongTensor
|
||||
|
@ -28,7 +29,6 @@ class MinDalle:
|
|||
self.is_reusable = is_reusable
|
||||
self.is_verbose = is_verbose
|
||||
self.sample_token_count = sample_token_count
|
||||
self.batch_count = 2
|
||||
self.text_token_count = 64
|
||||
self.image_token_count = 256
|
||||
self.layer_count = 24 if is_mega else 12
|
||||
|
@ -128,8 +128,7 @@ class MinDalle:
|
|||
embed_count = self.embed_count,
|
||||
glu_embed_count = self.glu_embed_count,
|
||||
layer_count = self.layer_count,
|
||||
start_token = self.image_vocab_count,
|
||||
batch_count = self.batch_count
|
||||
start_token = self.image_vocab_count
|
||||
)
|
||||
params = torch.load(self.decoder_params_path)
|
||||
self.decoder.load_state_dict(params, strict=False)
|
||||
|
@ -148,7 +147,12 @@ class MinDalle:
|
|||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||
|
||||
|
||||
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
|
||||
def generate_image_tokens(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
image_count: int
|
||||
) -> LongTensor:
|
||||
if self.is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text)
|
||||
if self.is_verbose: print("text tokens", tokens)
|
||||
|
@ -166,18 +170,29 @@ class MinDalle:
|
|||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
if self.is_verbose: print("sampling image tokens")
|
||||
if seed < 0: seed = random.randint(0, 2 ** 31)
|
||||
torch.manual_seed(seed)
|
||||
image_tokens = self.decoder.forward(text_tokens, encoder_state)
|
||||
if seed > 0: torch.manual_seed(seed)
|
||||
image_tokens = self.decoder.forward(
|
||||
image_count,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
)
|
||||
if not self.is_reusable: del self.decoder
|
||||
return image_tokens
|
||||
|
||||
|
||||
def generate_image(self, text: str, seed: int) -> Image.Image:
|
||||
image_tokens = self.generate_image_tokens(text, seed)
|
||||
def generate_image(
|
||||
self,
|
||||
text: str,
|
||||
seed: int = -1,
|
||||
grid_size: int = 1
|
||||
) -> Image.Image:
|
||||
image_count = grid_size ** 2
|
||||
image_tokens = self.generate_image_tokens(text, seed, image_count)
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if self.is_verbose: print("detokenizing image")
|
||||
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
return image
|
|
@ -1,4 +1,3 @@
|
|||
from typing import List, Tuple
|
||||
import torch
|
||||
from torch import LongTensor, nn, FloatTensor, BoolTensor
|
||||
torch.set_grad_enabled(False)
|
||||
|
@ -26,7 +25,7 @@ class DecoderSelfAttention(AttentionBase):
|
|||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_mask: BoolTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
) -> tuple[FloatTensor, FloatTensor]:
|
||||
keys = self.k_proj.forward(decoder_state)
|
||||
values = self.v_proj.forward(decoder_state)
|
||||
queries = self.q_proj.forward(decoder_state)
|
||||
|
@ -71,13 +70,13 @@ class DecoderLayer(nn.Module):
|
|||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
) -> tuple[FloatTensor, FloatTensor]:
|
||||
# Self Attention
|
||||
residual = decoder_state
|
||||
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
||||
self_attn_mask = self.token_indices < token_index + 1
|
||||
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
token_mask = self.token_indices == token_index
|
||||
self_attn_mask = torch.stack([self_attn_mask] * decoder_state.shape[0])
|
||||
decoder_state, attention_state = self.self_attn.forward(
|
||||
decoder_state,
|
||||
attention_state,
|
||||
|
@ -116,17 +115,17 @@ class DalleBartDecoder(nn.Module):
|
|||
attention_head_count: int,
|
||||
glu_embed_count: int,
|
||||
layer_count: int,
|
||||
batch_count: int,
|
||||
start_token: int
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_count = layer_count
|
||||
self.embed_count = embed_count
|
||||
self.sample_token_count = sample_token_count
|
||||
self.condition_factor = 10.0
|
||||
self.image_token_count = image_token_count
|
||||
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
||||
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
||||
self.layers: List[DecoderLayer] = nn.ModuleList([
|
||||
self.layers: list[DecoderLayer] = nn.ModuleList([
|
||||
DecoderLayer(
|
||||
image_token_count,
|
||||
attention_head_count,
|
||||
|
@ -138,12 +137,6 @@ class DalleBartDecoder(nn.Module):
|
|||
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
||||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
||||
self.attention_state_shape = (
|
||||
layer_count,
|
||||
2 * batch_count,
|
||||
image_token_count,
|
||||
embed_count
|
||||
)
|
||||
self.zero_prob = torch.zeros([1])
|
||||
self.token_indices = torch.arange(self.sample_token_count)
|
||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||
|
@ -155,17 +148,16 @@ class DalleBartDecoder(nn.Module):
|
|||
|
||||
def decode_step(
|
||||
self,
|
||||
text_tokens: LongTensor,
|
||||
attention_mask: BoolTensor,
|
||||
encoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
prev_token: LongTensor,
|
||||
prev_tokens: LongTensor,
|
||||
token_index: LongTensor
|
||||
) -> Tuple[LongTensor, FloatTensor]:
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
batch_count = encoder_state.shape[0]
|
||||
prev_token_batched = torch.cat([prev_token] * batch_count)
|
||||
token_index_batched = torch.cat([token_index] * batch_count)
|
||||
decoder_state = self.embed_tokens.forward(prev_token_batched)
|
||||
) -> tuple[LongTensor, FloatTensor]:
|
||||
image_count = encoder_state.shape[0] // 2
|
||||
token_index_batched = token_index[[0] * image_count * 2]
|
||||
prev_tokens = prev_tokens[list(range(image_count)) * 2]
|
||||
decoder_state = self.embed_tokens.forward(prev_tokens)
|
||||
decoder_state += self.embed_positions.forward(token_index_batched)
|
||||
decoder_state = self.layernorm_embedding.forward(decoder_state)
|
||||
decoder_state = decoder_state[:, None]
|
||||
|
@ -182,38 +174,52 @@ class DalleBartDecoder(nn.Module):
|
|||
decoder_state = self.final_ln(decoder_state)
|
||||
logits = self.lm_head(decoder_state)
|
||||
a = self.condition_factor
|
||||
logits: FloatTensor = (1 - a) * logits[0, -1] + a * logits[1, -1]
|
||||
logits: FloatTensor = (
|
||||
logits[:image_count, -1] * (1 - a) +
|
||||
logits[image_count:, -1] * a
|
||||
)
|
||||
|
||||
top_logits, _ = logits.topk(50, dim=-1)
|
||||
probs = torch.where(
|
||||
logits < top_logits[-1],
|
||||
logits < top_logits[:, [-1]],
|
||||
self.zero_prob,
|
||||
torch.exp(logits - top_logits[0])
|
||||
torch.exp(logits - top_logits[:, [0]])
|
||||
)
|
||||
return probs, torch.stack(attention_states_new)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_count: int,
|
||||
text_tokens: LongTensor,
|
||||
encoder_state: FloatTensor
|
||||
) -> LongTensor:
|
||||
image_tokens: List[LongTensor] = []
|
||||
attention_state = torch.zeros(self.attention_state_shape)
|
||||
if torch.cuda.is_available():
|
||||
attention_state = attention_state.cuda()
|
||||
image_token = self.start_token
|
||||
expanded_indices = [0] * image_count + [1] * image_count
|
||||
text_tokens = text_tokens[expanded_indices]
|
||||
encoder_state = encoder_state[expanded_indices]
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
|
||||
attention_state_shape = (
|
||||
self.layer_count,
|
||||
image_count * 4,
|
||||
self.image_token_count,
|
||||
self.embed_count
|
||||
)
|
||||
attention_state = torch.zeros(attention_state_shape)
|
||||
if torch.cuda.is_available(): attention_state = attention_state.cuda()
|
||||
|
||||
image_tokens = self.start_token[[0] * image_count]
|
||||
image_tokens_sequence: list[LongTensor] = []
|
||||
for i in range(self.sample_token_count):
|
||||
probs, attention_state = self.decode_step(
|
||||
text_tokens = text_tokens,
|
||||
attention_mask = attention_mask,
|
||||
encoder_state = encoder_state,
|
||||
attention_state = attention_state,
|
||||
prev_token = image_token,
|
||||
prev_tokens = image_tokens,
|
||||
token_index = self.token_indices[[i]]
|
||||
)
|
||||
|
||||
image_token = torch.multinomial(probs, 1)
|
||||
image_tokens += [image_token]
|
||||
image_tokens = torch.multinomial(probs, 1)[:, 0]
|
||||
image_tokens_sequence += [image_tokens]
|
||||
|
||||
return torch.cat(image_tokens)
|
||||
return torch.stack(image_tokens_sequence).T
|
|
@ -1,4 +1,3 @@
|
|||
from typing import List
|
||||
import torch
|
||||
from torch import nn, BoolTensor, FloatTensor, LongTensor
|
||||
torch.set_grad_enabled(False)
|
||||
|
@ -121,7 +120,7 @@ class DalleBartEncoder(nn.Module):
|
|||
super().__init__()
|
||||
self.embed_tokens = nn.Embedding(text_vocab_count, embed_count)
|
||||
self.embed_positions = nn.Embedding(text_token_count, embed_count)
|
||||
self.layers: List[EncoderLayer] = nn.ModuleList([
|
||||
self.layers: list[EncoderLayer] = nn.ModuleList([
|
||||
EncoderLayer(
|
||||
embed_count = embed_count,
|
||||
head_count = attention_head_count,
|
||||
|
@ -137,8 +136,7 @@ class DalleBartEncoder(nn.Module):
|
|||
|
||||
def forward(self, text_tokens: LongTensor) -> FloatTensor:
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
batch_count = text_tokens.shape[0]
|
||||
pose_tokens = torch.stack([self.token_indices] * batch_count)
|
||||
pose_tokens = self.token_indices[None][[0] * text_tokens.shape[0]]
|
||||
encoder_state = (
|
||||
self.embed_tokens.forward(text_tokens) +
|
||||
self.embed_positions.forward(pose_tokens)
|
||||
|
|
|
@ -3,8 +3,6 @@ from torch import Tensor
|
|||
from torch.nn import Module, ModuleList, GroupNorm, Conv2d, Embedding
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
BATCH_COUNT: int = 1
|
||||
|
||||
|
||||
class ResnetBlock(Module):
|
||||
def __init__(self, log2_count_in: int, log2_count_out: int):
|
||||
|
@ -42,22 +40,22 @@ class AttentionBlock(Module):
|
|||
self.proj_out = Conv2d(n, n, 1)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
n = 2 ** 9
|
||||
n, m = 2 ** 9, x.shape[0]
|
||||
h = x
|
||||
h = self.norm(h)
|
||||
q = self.q.forward(h)
|
||||
k = self.k.forward(h)
|
||||
v = self.v.forward(h)
|
||||
q = q.reshape(BATCH_COUNT, n, 2 ** 8)
|
||||
q = q.reshape(m, n, 2 ** 8)
|
||||
q = q.permute(0, 2, 1)
|
||||
k = k.reshape(BATCH_COUNT, n, 2 ** 8)
|
||||
k = k.reshape(m, n, 2 ** 8)
|
||||
w = torch.bmm(q, k)
|
||||
w /= n ** 0.5
|
||||
w = torch.softmax(w, dim=2)
|
||||
v = v.reshape(BATCH_COUNT, n, 2 ** 8)
|
||||
v = v.reshape(m, n, 2 ** 8)
|
||||
w = w.permute(0, 2, 1)
|
||||
h = torch.bmm(v, w)
|
||||
h = h.reshape(BATCH_COUNT, n, 2 ** 4, 2 ** 4)
|
||||
h = h.reshape(m, n, 2 ** 4, 2 ** 4)
|
||||
h = self.proj_out.forward(h)
|
||||
return x + h
|
||||
|
||||
|
@ -169,10 +167,10 @@ class VQGanDetokenizer(Module):
|
|||
|
||||
def forward(self, z: Tensor) -> Tensor:
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((BATCH_COUNT, 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
z = z.permute(0, 3, 1, 2).contiguous()
|
||||
z = self.post_quant_conv.forward(z)
|
||||
z = self.decoder.forward(z)
|
||||
z = z.permute(0, 2, 3, 1)
|
||||
z = z.clip(0.0, 1.0) * 255
|
||||
return z[0]
|
||||
return z
|
||||
|
|
|
@ -1,15 +1,13 @@
|
|||
from math import inf
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
class TextTokenizer:
|
||||
def __init__(self, vocab: dict, merges: List[str], is_verbose: bool = True):
|
||||
def __init__(self, vocab: dict, merges: list[str], is_verbose: bool = True):
|
||||
self.is_verbose = is_verbose
|
||||
self.token_from_subword = vocab
|
||||
pairs = [tuple(pair.split()) for pair in merges]
|
||||
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
|
||||
|
||||
def tokenize(self, text: str) -> List[int]:
|
||||
def tokenize(self, text: str) -> list[int]:
|
||||
sep_token = self.token_from_subword['</s>']
|
||||
cls_token = self.token_from_subword['<s>']
|
||||
unk_token = self.token_from_subword['<unk>']
|
||||
|
@ -21,8 +19,8 @@ class TextTokenizer:
|
|||
]
|
||||
return [cls_token] + tokens + [sep_token]
|
||||
|
||||
def get_byte_pair_encoding(self, word: str) -> List[str]:
|
||||
def get_pair_rank(pair: Tuple[str, str]) -> int:
|
||||
def get_byte_pair_encoding(self, word: str) -> list[str]:
|
||||
def get_pair_rank(pair: tuple[str, str]) -> int:
|
||||
return self.rank_from_pair.get(pair, inf)
|
||||
|
||||
subwords = [chr(ord(" ") + 256)] + list(word)
|
||||
|
|
Loading…
Reference in New Issue
Block a user