is_expendable argument reduces memory usage for command line script
This commit is contained in:
parent
38377107da
commit
1e18ba0ffa
|
@ -15,7 +15,7 @@ parser.set_defaults(torch=False)
|
||||||
parser.add_argument('--text', type=str, default='alien life')
|
parser.add_argument('--text', type=str, default='alien life')
|
||||||
parser.add_argument('--seed', type=int, default=7)
|
parser.add_argument('--seed', type=int, default=7)
|
||||||
parser.add_argument('--image_path', type=str, default='generated')
|
parser.add_argument('--image_path', type=str, default='generated')
|
||||||
parser.add_argument('--sample_token_count', type=int, default=256) # for debugging
|
parser.add_argument('--token_count', type=int, default=256) # for debugging
|
||||||
|
|
||||||
|
|
||||||
def ascii_from_image(image: Image.Image, size: int) -> str:
|
def ascii_from_image(image: Image.Image, size: int) -> str:
|
||||||
|
@ -42,20 +42,21 @@ def generate_image(
|
||||||
text: str,
|
text: str,
|
||||||
seed: int,
|
seed: int,
|
||||||
image_path: str,
|
image_path: str,
|
||||||
sample_token_count: int
|
token_count: int
|
||||||
):
|
):
|
||||||
|
is_expendable = True
|
||||||
if is_torch:
|
if is_torch:
|
||||||
image_generator = MinDalleTorch(is_mega, sample_token_count)
|
image_generator = MinDalleTorch(is_mega, is_expendable, token_count)
|
||||||
image_tokens = image_generator.generate_image_tokens(text, seed)
|
|
||||||
|
|
||||||
if sample_token_count < image_generator.config['image_length']:
|
if token_count < image_generator.config['image_length']:
|
||||||
|
image_tokens = image_generator.generate_image_tokens(text, seed)
|
||||||
print('image tokens', list(image_tokens.to('cpu').detach().numpy()))
|
print('image tokens', list(image_tokens.to('cpu').detach().numpy()))
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
image = image_generator.generate_image(text, seed)
|
image = image_generator.generate_image(text, seed)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
image_generator = MinDalleFlax(is_mega)
|
image_generator = MinDalleFlax(is_mega, is_expendable=True)
|
||||||
image = image_generator.generate_image(text, seed)
|
image = image_generator.generate_image(text, seed)
|
||||||
|
|
||||||
save_image(image, image_path)
|
save_image(image, image_path)
|
||||||
|
@ -71,5 +72,5 @@ if __name__ == '__main__':
|
||||||
text=args.text,
|
text=args.text,
|
||||||
seed=args.seed,
|
seed=args.seed,
|
||||||
image_path=args.image_path,
|
image_path=args.image_path,
|
||||||
sample_token_count=args.sample_token_count
|
token_count=args.token_count
|
||||||
)
|
)
|
|
@ -6,7 +6,7 @@ from .text_tokenizer import TextTokenizer
|
||||||
from .load_params import load_vqgan_torch_params, load_dalle_bart_flax_params
|
from .load_params import load_vqgan_torch_params, load_dalle_bart_flax_params
|
||||||
from .models.vqgan_detokenizer import VQGanDetokenizer
|
from .models.vqgan_detokenizer import VQGanDetokenizer
|
||||||
|
|
||||||
class MinDalle:
|
class MinDalleBase:
|
||||||
def __init__(self, is_mega: bool):
|
def __init__(self, is_mega: bool):
|
||||||
self.is_mega = is_mega
|
self.is_mega = is_mega
|
||||||
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
||||||
|
@ -25,11 +25,15 @@ class MinDalle:
|
||||||
merges = f.read().split("\n")[1:-1]
|
merges = f.read().split("\n")[1:-1]
|
||||||
|
|
||||||
self.model_params = load_dalle_bart_flax_params(model_path)
|
self.model_params = load_dalle_bart_flax_params(model_path)
|
||||||
|
|
||||||
self.tokenizer = TextTokenizer(vocab, merges)
|
self.tokenizer = TextTokenizer(vocab, merges)
|
||||||
|
|
||||||
|
|
||||||
|
def init_detokenizer(self):
|
||||||
|
print("initializing VQGanDetokenizer")
|
||||||
|
params = load_vqgan_torch_params('./pretrained/vqgan')
|
||||||
self.detokenizer = VQGanDetokenizer()
|
self.detokenizer = VQGanDetokenizer()
|
||||||
vqgan_params = load_vqgan_torch_params('./pretrained/vqgan')
|
self.detokenizer.load_state_dict(params)
|
||||||
self.detokenizer.load_state_dict(vqgan_params)
|
del params
|
||||||
|
|
||||||
|
|
||||||
def tokenize_text(self, text: str) -> numpy.ndarray:
|
def tokenize_text(self, text: str) -> numpy.ndarray:
|
|
@ -3,18 +3,25 @@ import numpy
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from .min_dalle import MinDalle
|
from .min_dalle_base import MinDalleBase
|
||||||
from .models.dalle_bart_encoder_flax import DalleBartEncoderFlax
|
from .models.dalle_bart_encoder_flax import DalleBartEncoderFlax
|
||||||
from .models.dalle_bart_decoder_flax import DalleBartDecoderFlax
|
from .models.dalle_bart_decoder_flax import DalleBartDecoderFlax
|
||||||
|
|
||||||
|
|
||||||
class MinDalleFlax(MinDalle):
|
class MinDalleFlax(MinDalleBase):
|
||||||
def __init__(self, is_mega: bool):
|
def __init__(self, is_mega: bool, is_expendable: bool = False):
|
||||||
super().__init__(is_mega)
|
super().__init__(is_mega)
|
||||||
|
self.is_expendable = is_expendable
|
||||||
print("initializing MinDalleFlax")
|
print("initializing MinDalleFlax")
|
||||||
|
if not is_expendable:
|
||||||
|
self.init_encoder()
|
||||||
|
self.init_decoder()
|
||||||
|
self.init_detokenizer()
|
||||||
|
|
||||||
print("loading encoder")
|
|
||||||
self.encoder = DalleBartEncoderFlax(
|
def init_encoder(self):
|
||||||
|
print("initializing DalleBartEncoderFlax")
|
||||||
|
self.encoder: DalleBartEncoderFlax = DalleBartEncoderFlax(
|
||||||
attention_head_count = self.config['encoder_attention_heads'],
|
attention_head_count = self.config['encoder_attention_heads'],
|
||||||
embed_count = self.config['d_model'],
|
embed_count = self.config['d_model'],
|
||||||
glu_embed_count = self.config['encoder_ffn_dim'],
|
glu_embed_count = self.config['encoder_ffn_dim'],
|
||||||
|
@ -23,7 +30,9 @@ class MinDalleFlax(MinDalle):
|
||||||
layer_count = self.config['encoder_layers']
|
layer_count = self.config['encoder_layers']
|
||||||
).bind({'params': self.model_params.pop('encoder')})
|
).bind({'params': self.model_params.pop('encoder')})
|
||||||
|
|
||||||
print("loading decoder")
|
|
||||||
|
def init_decoder(self):
|
||||||
|
print("initializing DalleBartDecoderFlax")
|
||||||
self.decoder = DalleBartDecoderFlax(
|
self.decoder = DalleBartDecoderFlax(
|
||||||
image_token_count = self.config['image_length'],
|
image_token_count = self.config['image_length'],
|
||||||
text_token_count = self.config['max_text_length'],
|
text_token_count = self.config['max_text_length'],
|
||||||
|
@ -39,20 +48,30 @@ class MinDalleFlax(MinDalle):
|
||||||
def generate_image(self, text: str, seed: int) -> Image.Image:
|
def generate_image(self, text: str, seed: int) -> Image.Image:
|
||||||
text_tokens = self.tokenize_text(text)
|
text_tokens = self.tokenize_text(text)
|
||||||
|
|
||||||
|
if self.is_expendable: self.init_encoder()
|
||||||
print("encoding text tokens")
|
print("encoding text tokens")
|
||||||
encoder_state = self.encoder(text_tokens)
|
encoder_state = self.encoder(text_tokens)
|
||||||
|
if self.is_expendable: del self.encoder
|
||||||
|
|
||||||
|
if self.is_expendable:
|
||||||
|
self.init_decoder()
|
||||||
|
params = self.model_params.pop('decoder')
|
||||||
|
else:
|
||||||
|
params = self.model_params['decoder']
|
||||||
print("sampling image tokens")
|
print("sampling image tokens")
|
||||||
image_tokens = self.decoder.sample_image_tokens(
|
image_tokens = self.decoder.sample_image_tokens(
|
||||||
text_tokens,
|
text_tokens,
|
||||||
encoder_state,
|
encoder_state,
|
||||||
jax.random.PRNGKey(seed),
|
jax.random.PRNGKey(seed),
|
||||||
self.model_params['decoder']
|
params
|
||||||
)
|
)
|
||||||
|
if self.is_expendable: del self.decoder
|
||||||
|
|
||||||
image_tokens = torch.tensor(numpy.array(image_tokens))
|
image_tokens = torch.tensor(numpy.array(image_tokens))
|
||||||
|
|
||||||
|
if self.is_expendable: self.init_detokenizer()
|
||||||
print("detokenizing image")
|
print("detokenizing image")
|
||||||
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||||
|
if self.is_expendable: del self.detokenizer
|
||||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||||
return image
|
return image
|
|
@ -9,17 +9,30 @@ torch.set_grad_enabled(False)
|
||||||
torch.set_num_threads(os.cpu_count())
|
torch.set_num_threads(os.cpu_count())
|
||||||
|
|
||||||
from .load_params import convert_dalle_bart_torch_from_flax_params
|
from .load_params import convert_dalle_bart_torch_from_flax_params
|
||||||
from .min_dalle import MinDalle
|
from .min_dalle_base import MinDalleBase
|
||||||
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
||||||
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
||||||
|
|
||||||
|
|
||||||
class MinDalleTorch(MinDalle):
|
class MinDalleTorch(MinDalleBase):
|
||||||
def __init__(self, is_mega: bool, sample_token_count: int = 256):
|
def __init__(
|
||||||
|
self,
|
||||||
|
is_mega: bool,
|
||||||
|
is_expendable: bool = False,
|
||||||
|
token_count: int = 256
|
||||||
|
):
|
||||||
super().__init__(is_mega)
|
super().__init__(is_mega)
|
||||||
|
self.is_expendable = is_expendable
|
||||||
|
self.token_count = token_count
|
||||||
print("initializing MinDalleTorch")
|
print("initializing MinDalleTorch")
|
||||||
|
if not is_expendable:
|
||||||
|
self.init_encoder()
|
||||||
|
self.init_decoder()
|
||||||
|
self.init_detokenizer()
|
||||||
|
|
||||||
print("loading encoder")
|
|
||||||
|
def init_encoder(self):
|
||||||
|
print("initializing DalleBartEncoderTorch")
|
||||||
self.encoder = DalleBartEncoderTorch(
|
self.encoder = DalleBartEncoderTorch(
|
||||||
layer_count = self.config['encoder_layers'],
|
layer_count = self.config['encoder_layers'],
|
||||||
embed_count = self.config['d_model'],
|
embed_count = self.config['d_model'],
|
||||||
|
@ -28,18 +41,22 @@ class MinDalleTorch(MinDalle):
|
||||||
text_token_count = self.config['max_text_length'],
|
text_token_count = self.config['max_text_length'],
|
||||||
glu_embed_count = self.config['encoder_ffn_dim']
|
glu_embed_count = self.config['encoder_ffn_dim']
|
||||||
)
|
)
|
||||||
encoder_params = convert_dalle_bart_torch_from_flax_params(
|
params = convert_dalle_bart_torch_from_flax_params(
|
||||||
self.model_params.pop('encoder'),
|
self.model_params.pop('encoder'),
|
||||||
layer_count=self.config['encoder_layers'],
|
layer_count=self.config['encoder_layers'],
|
||||||
is_encoder=True
|
is_encoder=True
|
||||||
)
|
)
|
||||||
self.encoder.load_state_dict(encoder_params, strict=False)
|
self.encoder.load_state_dict(params, strict=False)
|
||||||
|
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
|
||||||
|
del params
|
||||||
|
|
||||||
print("loading decoder")
|
|
||||||
|
def init_decoder(self):
|
||||||
|
print("initializing DalleBartDecoderTorch")
|
||||||
self.decoder = DalleBartDecoderTorch(
|
self.decoder = DalleBartDecoderTorch(
|
||||||
image_vocab_size = self.config['image_vocab_size'],
|
image_vocab_size = self.config['image_vocab_size'],
|
||||||
image_token_count = self.config['image_length'],
|
image_token_count = self.config['image_length'],
|
||||||
sample_token_count = sample_token_count,
|
sample_token_count = self.token_count,
|
||||||
embed_count = self.config['d_model'],
|
embed_count = self.config['d_model'],
|
||||||
attention_head_count = self.config['decoder_attention_heads'],
|
attention_head_count = self.config['decoder_attention_heads'],
|
||||||
glu_embed_count = self.config['decoder_ffn_dim'],
|
glu_embed_count = self.config['decoder_ffn_dim'],
|
||||||
|
@ -48,16 +65,19 @@ class MinDalleTorch(MinDalle):
|
||||||
start_token = self.config['decoder_start_token_id'],
|
start_token = self.config['decoder_start_token_id'],
|
||||||
is_verbose = True
|
is_verbose = True
|
||||||
)
|
)
|
||||||
decoder_params = convert_dalle_bart_torch_from_flax_params(
|
params = convert_dalle_bart_torch_from_flax_params(
|
||||||
self.model_params.pop('decoder'),
|
self.model_params.pop('decoder'),
|
||||||
layer_count=self.config['decoder_layers'],
|
layer_count=self.config['decoder_layers'],
|
||||||
is_encoder=False
|
is_encoder=False
|
||||||
)
|
)
|
||||||
self.decoder.load_state_dict(decoder_params, strict=False)
|
self.decoder.load_state_dict(params, strict=False)
|
||||||
|
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
|
||||||
|
del params
|
||||||
|
|
||||||
|
|
||||||
|
def init_detokenizer(self):
|
||||||
|
super().init_detokenizer()
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
self.encoder = self.encoder.cuda()
|
|
||||||
self.decoder = self.decoder.cuda()
|
|
||||||
self.detokenizer = self.detokenizer.cuda()
|
self.detokenizer = self.detokenizer.cuda()
|
||||||
|
|
||||||
|
|
||||||
|
@ -66,18 +86,24 @@ class MinDalleTorch(MinDalle):
|
||||||
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
||||||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||||
|
|
||||||
|
if self.is_expendable: self.init_encoder()
|
||||||
print("encoding text tokens")
|
print("encoding text tokens")
|
||||||
encoder_state = self.encoder.forward(text_tokens)
|
encoder_state = self.encoder.forward(text_tokens)
|
||||||
|
if self.is_expendable: del self.encoder
|
||||||
|
|
||||||
|
if self.is_expendable: self.init_decoder()
|
||||||
print("sampling image tokens")
|
print("sampling image tokens")
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
image_tokens = self.decoder.forward(text_tokens, encoder_state)
|
image_tokens = self.decoder.forward(text_tokens, encoder_state)
|
||||||
|
if self.is_expendable: del self.decoder
|
||||||
return image_tokens
|
return image_tokens
|
||||||
|
|
||||||
|
|
||||||
def generate_image(self, text: str, seed: int) -> Image.Image:
|
def generate_image(self, text: str, seed: int) -> Image.Image:
|
||||||
image_tokens = self.generate_image_tokens(text, seed)
|
image_tokens = self.generate_image_tokens(text, seed)
|
||||||
|
if self.is_expendable: self.init_detokenizer()
|
||||||
print("detokenizing image")
|
print("detokenizing image")
|
||||||
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||||
|
if self.is_expendable: del self.detokenizer
|
||||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||||
return image
|
return image
|
Loading…
Reference in New Issue
Block a user