display intermediate images

This commit is contained in:
Brett Kuprel 2022-07-04 16:06:49 -04:00
parent b634375edf
commit 0d9998926d
7 changed files with 107 additions and 85 deletions

2
README.md vendored
View File

@ -8,7 +8,7 @@
This is a fast, minimal implementation of Boris Dayma's [DALL·E Mega](https://github.com/borisdayma/dalle-mini). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch.
To generate a 4x4 grid of DALL·E Mega images it takes
To generate a 4x4 grid of DALL·E Mega images it takes:
- 89 sec with a T4 in Colab
- 48 sec with a P100 in Colab
- 14 sec with an A100 on Replicate

6
README.rst vendored
View File

@ -8,9 +8,9 @@ Mega <https://github.com/borisdayma/dalle-mini>`__. It has been stripped
down for inference and converted to PyTorch. The only third party
dependencies are numpy, requests, pillow and torch.
It takes - **35 seconds** to generate a 3x3 grid with a P100 in Colab -
**16 seconds** to generate a 4x4 grid with an A100 on Replicate -
**TBD** to generate a 4x4 grid with an H100 (@NVIDIA?)
To generate a 4x4 grid of DALL·E Mega images it takes: - 89 sec with a
T4 in Colab - 48 sec with a P100 in Colab - 14 sec with an A100 on
Replicate - TBD with an H100 (@NVIDIA?)
The flax model and code for converting it to torch can be found
`here <https://github.com/kuprel/min-dalle-flax>`__.

View File

@ -1,7 +1,6 @@
import argparse
import os
from PIL import Image
from min_dalle import MinDalle
@ -9,7 +8,7 @@ parser = argparse.ArgumentParser()
parser.add_argument('--mega', action='store_true')
parser.add_argument('--no-mega', dest='mega', action='store_false')
parser.set_defaults(mega=False)
parser.add_argument('--text', type=str, default='alien life')
parser.add_argument('--text', type=str, default='Dali painting of WALL·E')
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument('--grid-size', type=int, default=1)
parser.add_argument('--image-path', type=str, default='generated')
@ -17,7 +16,7 @@ parser.add_argument('--models-root', type=str, default='pretrained')
parser.add_argument('--row-count', type=int, default=16) # for debugging
def ascii_from_image(image: Image.Image, size: int) -> str:
def ascii_from_image(image: Image.Image, size: int = 128) -> str:
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
chars = list('.,;/IOX')
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
@ -57,12 +56,13 @@ def generate_image(
text,
seed,
grid_size ** 2,
row_count
row_count,
is_verbose=True
)
image_tokens = image_tokens[:, :token_count].to('cpu').detach().numpy()
print('image tokens', image_tokens)
else:
image = model.generate_image(text, seed, grid_size)
image = model.generate_image(text, seed, grid_size, is_verbose=True)
save_image(image, image_path)
print(ascii_from_image(image, size=128))

View File

@ -1,10 +1,11 @@
import os
from PIL import Image
import numpy
from torch import LongTensor
from torch import LongTensor, FloatTensor
import torch
import json
import requests
from typing import Callable, Tuple
torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
@ -26,7 +27,6 @@ class MinDalle:
self.is_reusable = is_reusable
self.is_verbose = is_verbose
self.text_token_count = 64
self.image_token_count = 256
self.layer_count = 24 if is_mega else 12
self.attention_head_count = 32 if is_mega else 16
self.embed_count = 2048 if is_mega else 1024
@ -91,7 +91,7 @@ class MinDalle:
vocab = json.load(f)
with open(self.merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges, is_verbose=self.is_verbose)
self.tokenizer = TextTokenizer(vocab, merges)
def init_encoder(self):
@ -117,7 +117,6 @@ class MinDalle:
if not is_downloaded: self.download_decoder()
if self.is_verbose: print("initializing DalleBartDecoder")
self.decoder = DalleBartDecoder(
image_token_count = self.image_token_count,
image_vocab_count = self.image_vocab_count,
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
@ -142,16 +141,37 @@ class MinDalle:
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
def image_from_tokens(
self,
grid_size: int,
image_tokens: LongTensor,
is_verbose: bool = False
) -> Image.Image:
if not self.is_reusable: del self.decoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
if not self.is_reusable: del self.detokenizer
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
image = Image.fromarray(image.to('cpu').detach().numpy())
return image
def generate_image_tokens(
self,
text: str,
seed: int,
image_count: int,
row_count: int
grid_size: int,
row_count: int,
mid_count: int = None,
handle_intermediate_image: Callable[[int, Image.Image], None] = None,
is_verbose: bool = False
) -> LongTensor:
if self.is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text)
if self.is_verbose: print("text tokens", tokens)
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
if is_verbose: print("text tokens", tokens)
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
text_tokens[0, :2] = [tokens[0], tokens[-1]]
text_tokens[1, :len(tokens)] = tokens
@ -160,40 +180,57 @@ class MinDalle:
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
if not self.is_reusable: self.init_encoder()
if self.is_verbose: print("encoding text tokens")
if is_verbose: print("encoding text tokens")
encoder_state = self.encoder.forward(text_tokens)
if not self.is_reusable: del self.encoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_decoder()
if self.is_verbose: print("sampling image tokens")
if seed > 0: torch.manual_seed(seed)
image_tokens = self.decoder.forward(
image_count,
row_count,
encoder_state, attention_mask, attention_state, image_tokens = (
self.decoder.decode_initial(
seed,
grid_size ** 2,
text_tokens,
encoder_state
)
if not self.is_reusable: del self.decoder
return image_tokens
)
for row_index in range(row_count):
if is_verbose:
print('sampling row {} of {}'.format(row_index + 1, row_count))
attention_state, image_tokens = self.decoder.decode_row(
row_index,
encoder_state,
attention_mask,
attention_state,
image_tokens
)
if mid_count is not None:
if ((row_index + 1) * mid_count) % row_count == 0:
tokens = image_tokens[:, 1:]
image = self.image_from_tokens(grid_size, tokens, is_verbose)
handle_intermediate_image(row_index, image)
return image_tokens[:, 1:]
def generate_image(
self,
text: str,
seed: int = -1,
grid_size: int = 1
grid_size: int = 1,
mid_count: int = None,
handle_intermediate_image: Callable[[Image.Image], None] = None,
is_verbose: bool = False
) -> Image.Image:
image_count = grid_size ** 2
row_count = 16
image_tokens = self.generate_image_tokens(text, seed, image_count, row_count)
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if self.is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
if not self.is_reusable: del self.detokenizer
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
image = Image.fromarray(image.to('cpu').detach().numpy())
if torch.cuda.is_available(): torch.cuda.empty_cache()
return image
image_tokens = self.generate_image_tokens(
text,
seed,
grid_size,
row_count = 16,
mid_count = mid_count,
handle_intermediate_image = handle_intermediate_image,
is_verbose = is_verbose
)
return self.image_from_tokens(grid_size, image_tokens, is_verbose)

View File

@ -5,6 +5,9 @@ torch.set_grad_enabled(False)
from .dalle_bart_encoder import GLU, AttentionBase
IMAGE_TOKEN_COUNT = 256
BLANK_TOKEN = 6965
class DecoderCrossAttention(AttentionBase):
def forward(
@ -20,9 +23,9 @@ class DecoderCrossAttention(AttentionBase):
class DecoderSelfAttention(AttentionBase):
def __init__(self, head_count: int, embed_count: int, token_count: int):
def __init__(self, head_count: int, embed_count: int):
super().__init__(head_count, embed_count)
token_indices = torch.arange(token_count)
token_indices = torch.arange(IMAGE_TOKEN_COUNT)
if torch.cuda.is_available(): token_indices = token_indices.cuda()
self.token_indices = token_indices
@ -48,19 +51,13 @@ class DecoderSelfAttention(AttentionBase):
class DecoderLayer(nn.Module):
def __init__(
self,
image_token_count: int,
head_count: int,
embed_count: int,
glu_embed_count: int
):
super().__init__()
self.image_token_count = image_token_count
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
self.self_attn = DecoderSelfAttention(
head_count,
embed_count,
image_token_count
)
self.self_attn = DecoderSelfAttention(head_count, embed_count)
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
@ -110,7 +107,6 @@ class DalleBartDecoder(nn.Module):
def __init__(
self,
image_vocab_count: int,
image_token_count: int,
embed_count: int,
attention_head_count: int,
glu_embed_count: int,
@ -121,12 +117,10 @@ class DalleBartDecoder(nn.Module):
self.layer_count = layer_count
self.embed_count = embed_count
self.condition_factor = 10.0
self.image_token_count = image_token_count
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
self.embed_positions = nn.Embedding(image_token_count, embed_count)
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
self.layers: List[DecoderLayer] = nn.ModuleList([
DecoderLayer(
image_token_count,
attention_head_count,
embed_count,
glu_embed_count
@ -137,7 +131,7 @@ class DalleBartDecoder(nn.Module):
self.final_ln = nn.LayerNorm(embed_count)
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
self.zero_prob = torch.zeros([1])
self.token_indices = torch.arange(self.image_token_count)
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT)
self.start_token = torch.tensor([start_token]).to(torch.long)
if torch.cuda.is_available():
self.zero_prob = self.zero_prob.cuda()
@ -188,8 +182,8 @@ class DalleBartDecoder(nn.Module):
def decode_row(
self,
row_index: int,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_mask: BoolTensor,
attention_state: FloatTensor,
image_tokens_sequence: LongTensor
) -> Tuple[FloatTensor, LongTensor]:
@ -202,19 +196,18 @@ class DalleBartDecoder(nn.Module):
prev_tokens = image_tokens_sequence[:, i],
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
return attention_state, image_tokens_sequence
def forward(
def decode_initial(
self,
seed: int,
image_count: int,
row_count: int,
text_tokens: LongTensor,
encoder_state: FloatTensor
) -> LongTensor:
) -> Tuple[FloatTensor, FloatTensor, FloatTensor, LongTensor]:
expanded_indices = [0] * image_count + [1] * image_count
text_tokens = text_tokens[expanded_indices]
encoder_state = encoder_state[expanded_indices]
@ -223,13 +216,13 @@ class DalleBartDecoder(nn.Module):
attention_state_shape = (
self.layer_count,
image_count * 4,
self.image_token_count,
IMAGE_TOKEN_COUNT,
self.embed_count
)
attention_state = torch.zeros(attention_state_shape)
image_tokens_sequence = torch.full(
(image_count, self.image_token_count + 1),
6965, # black token
(image_count, IMAGE_TOKEN_COUNT + 1),
BLANK_TOKEN,
dtype=torch.long
)
if torch.cuda.is_available():
@ -238,13 +231,6 @@ class DalleBartDecoder(nn.Module):
image_tokens_sequence[:, 0] = self.start_token[0]
for row_index in range(row_count):
attention_state, image_tokens_sequence = self.decode_row(
row_index,
attention_mask,
encoder_state,
attention_state,
image_tokens_sequence
)
if seed > 0: torch.manual_seed(seed)
return image_tokens_sequence[:, 1:]
return encoder_state, attention_mask, attention_state, image_tokens_sequence

View File

@ -2,13 +2,12 @@ from math import inf
from typing import List, Tuple
class TextTokenizer:
def __init__(self, vocab: dict, merges: List[str], is_verbose: bool = True):
self.is_verbose = is_verbose
def __init__(self, vocab: dict, merges: List[str]):
self.token_from_subword = vocab
pairs = [tuple(pair.split()) for pair in merges]
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
def tokenize(self, text: str) -> List[int]:
def tokenize(self, text: str, is_verbose: bool = False) -> List[int]:
sep_token = self.token_from_subword['</s>']
cls_token = self.token_from_subword['<s>']
unk_token = self.token_from_subword['<unk>']
@ -16,11 +15,11 @@ class TextTokenizer:
tokens = [
self.token_from_subword.get(subword, unk_token)
for word in text.split(" ") if len(word) > 0
for subword in self.get_byte_pair_encoding(word)
for subword in self.get_byte_pair_encoding(word, is_verbose)
]
return [cls_token] + tokens + [sep_token]
def get_byte_pair_encoding(self, word: str) -> List[str]:
def get_byte_pair_encoding(self, word: str, is_verbose: bool) -> List[str]:
def get_pair_rank(pair: Tuple[str, str]) -> int:
return self.rank_from_pair.get(pair, inf)
@ -36,5 +35,5 @@ class TextTokenizer:
(subwords[i + 2:] if i + 2 < len(subwords) else [])
)
if self.is_verbose: print(subwords)
if is_verbose: print(subwords)
return subwords

View File

@ -5,7 +5,7 @@ setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
long_description=(Path(__file__).parent / "README.rst").read_text(),
version='0.2.17',
version='0.2.21',
author='Brett Kuprel',
author_email='brkuprel@gmail.com',
url='https://github.com/kuprel/min-dalle',