display intermediate images
This commit is contained in:
parent
b634375edf
commit
0d9998926d
2
README.md
vendored
2
README.md
vendored
|
@ -8,7 +8,7 @@
|
||||||
|
|
||||||
This is a fast, minimal implementation of Boris Dayma's [DALL·E Mega](https://github.com/borisdayma/dalle-mini). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch.
|
This is a fast, minimal implementation of Boris Dayma's [DALL·E Mega](https://github.com/borisdayma/dalle-mini). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch.
|
||||||
|
|
||||||
To generate a 4x4 grid of DALL·E Mega images it takes
|
To generate a 4x4 grid of DALL·E Mega images it takes:
|
||||||
- 89 sec with a T4 in Colab
|
- 89 sec with a T4 in Colab
|
||||||
- 48 sec with a P100 in Colab
|
- 48 sec with a P100 in Colab
|
||||||
- 14 sec with an A100 on Replicate
|
- 14 sec with an A100 on Replicate
|
||||||
|
|
6
README.rst
vendored
6
README.rst
vendored
|
@ -8,9 +8,9 @@ Mega <https://github.com/borisdayma/dalle-mini>`__. It has been stripped
|
||||||
down for inference and converted to PyTorch. The only third party
|
down for inference and converted to PyTorch. The only third party
|
||||||
dependencies are numpy, requests, pillow and torch.
|
dependencies are numpy, requests, pillow and torch.
|
||||||
|
|
||||||
It takes - **35 seconds** to generate a 3x3 grid with a P100 in Colab -
|
To generate a 4x4 grid of DALL·E Mega images it takes: - 89 sec with a
|
||||||
**16 seconds** to generate a 4x4 grid with an A100 on Replicate -
|
T4 in Colab - 48 sec with a P100 in Colab - 14 sec with an A100 on
|
||||||
**TBD** to generate a 4x4 grid with an H100 (@NVIDIA?)
|
Replicate - TBD with an H100 (@NVIDIA?)
|
||||||
|
|
||||||
The flax model and code for converting it to torch can be found
|
The flax model and code for converting it to torch can be found
|
||||||
`here <https://github.com/kuprel/min-dalle-flax>`__.
|
`here <https://github.com/kuprel/min-dalle-flax>`__.
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
from min_dalle import MinDalle
|
from min_dalle import MinDalle
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,7 +8,7 @@ parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--mega', action='store_true')
|
parser.add_argument('--mega', action='store_true')
|
||||||
parser.add_argument('--no-mega', dest='mega', action='store_false')
|
parser.add_argument('--no-mega', dest='mega', action='store_false')
|
||||||
parser.set_defaults(mega=False)
|
parser.set_defaults(mega=False)
|
||||||
parser.add_argument('--text', type=str, default='alien life')
|
parser.add_argument('--text', type=str, default='Dali painting of WALL·E')
|
||||||
parser.add_argument('--seed', type=int, default=-1)
|
parser.add_argument('--seed', type=int, default=-1)
|
||||||
parser.add_argument('--grid-size', type=int, default=1)
|
parser.add_argument('--grid-size', type=int, default=1)
|
||||||
parser.add_argument('--image-path', type=str, default='generated')
|
parser.add_argument('--image-path', type=str, default='generated')
|
||||||
|
@ -17,7 +16,7 @@ parser.add_argument('--models-root', type=str, default='pretrained')
|
||||||
parser.add_argument('--row-count', type=int, default=16) # for debugging
|
parser.add_argument('--row-count', type=int, default=16) # for debugging
|
||||||
|
|
||||||
|
|
||||||
def ascii_from_image(image: Image.Image, size: int) -> str:
|
def ascii_from_image(image: Image.Image, size: int = 128) -> str:
|
||||||
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
|
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
|
||||||
chars = list('.,;/IOX')
|
chars = list('.,;/IOX')
|
||||||
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
|
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
|
||||||
|
@ -57,12 +56,13 @@ def generate_image(
|
||||||
text,
|
text,
|
||||||
seed,
|
seed,
|
||||||
grid_size ** 2,
|
grid_size ** 2,
|
||||||
row_count
|
row_count,
|
||||||
|
is_verbose=True
|
||||||
)
|
)
|
||||||
image_tokens = image_tokens[:, :token_count].to('cpu').detach().numpy()
|
image_tokens = image_tokens[:, :token_count].to('cpu').detach().numpy()
|
||||||
print('image tokens', image_tokens)
|
print('image tokens', image_tokens)
|
||||||
else:
|
else:
|
||||||
image = model.generate_image(text, seed, grid_size)
|
image = model.generate_image(text, seed, grid_size, is_verbose=True)
|
||||||
save_image(image, image_path)
|
save_image(image, image_path)
|
||||||
print(ascii_from_image(image, size=128))
|
print(ascii_from_image(image, size=128))
|
||||||
|
|
||||||
|
|
|
@ -1,10 +1,11 @@
|
||||||
import os
|
import os
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy
|
import numpy
|
||||||
from torch import LongTensor
|
from torch import LongTensor, FloatTensor
|
||||||
import torch
|
import torch
|
||||||
import json
|
import json
|
||||||
import requests
|
import requests
|
||||||
|
from typing import Callable, Tuple
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
torch.set_num_threads(os.cpu_count())
|
torch.set_num_threads(os.cpu_count())
|
||||||
|
|
||||||
|
@ -26,7 +27,6 @@ class MinDalle:
|
||||||
self.is_reusable = is_reusable
|
self.is_reusable = is_reusable
|
||||||
self.is_verbose = is_verbose
|
self.is_verbose = is_verbose
|
||||||
self.text_token_count = 64
|
self.text_token_count = 64
|
||||||
self.image_token_count = 256
|
|
||||||
self.layer_count = 24 if is_mega else 12
|
self.layer_count = 24 if is_mega else 12
|
||||||
self.attention_head_count = 32 if is_mega else 16
|
self.attention_head_count = 32 if is_mega else 16
|
||||||
self.embed_count = 2048 if is_mega else 1024
|
self.embed_count = 2048 if is_mega else 1024
|
||||||
|
@ -91,7 +91,7 @@ class MinDalle:
|
||||||
vocab = json.load(f)
|
vocab = json.load(f)
|
||||||
with open(self.merges_path, 'r', encoding='utf8') as f:
|
with open(self.merges_path, 'r', encoding='utf8') as f:
|
||||||
merges = f.read().split("\n")[1:-1]
|
merges = f.read().split("\n")[1:-1]
|
||||||
self.tokenizer = TextTokenizer(vocab, merges, is_verbose=self.is_verbose)
|
self.tokenizer = TextTokenizer(vocab, merges)
|
||||||
|
|
||||||
|
|
||||||
def init_encoder(self):
|
def init_encoder(self):
|
||||||
|
@ -117,7 +117,6 @@ class MinDalle:
|
||||||
if not is_downloaded: self.download_decoder()
|
if not is_downloaded: self.download_decoder()
|
||||||
if self.is_verbose: print("initializing DalleBartDecoder")
|
if self.is_verbose: print("initializing DalleBartDecoder")
|
||||||
self.decoder = DalleBartDecoder(
|
self.decoder = DalleBartDecoder(
|
||||||
image_token_count = self.image_token_count,
|
|
||||||
image_vocab_count = self.image_vocab_count,
|
image_vocab_count = self.image_vocab_count,
|
||||||
attention_head_count = self.attention_head_count,
|
attention_head_count = self.attention_head_count,
|
||||||
embed_count = self.embed_count,
|
embed_count = self.embed_count,
|
||||||
|
@ -142,16 +141,37 @@ class MinDalle:
|
||||||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||||
|
|
||||||
|
|
||||||
|
def image_from_tokens(
|
||||||
|
self,
|
||||||
|
grid_size: int,
|
||||||
|
image_tokens: LongTensor,
|
||||||
|
is_verbose: bool = False
|
||||||
|
) -> Image.Image:
|
||||||
|
if not self.is_reusable: del self.decoder
|
||||||
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||||
|
if not self.is_reusable: self.init_detokenizer()
|
||||||
|
if is_verbose: print("detokenizing image")
|
||||||
|
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||||
|
if not self.is_reusable: del self.detokenizer
|
||||||
|
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||||
|
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||||
|
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
def generate_image_tokens(
|
def generate_image_tokens(
|
||||||
self,
|
self,
|
||||||
text: str,
|
text: str,
|
||||||
seed: int,
|
seed: int,
|
||||||
image_count: int,
|
grid_size: int,
|
||||||
row_count: int
|
row_count: int,
|
||||||
|
mid_count: int = None,
|
||||||
|
handle_intermediate_image: Callable[[int, Image.Image], None] = None,
|
||||||
|
is_verbose: bool = False
|
||||||
) -> LongTensor:
|
) -> LongTensor:
|
||||||
if self.is_verbose: print("tokenizing text")
|
if is_verbose: print("tokenizing text")
|
||||||
tokens = self.tokenizer.tokenize(text)
|
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||||
if self.is_verbose: print("text tokens", tokens)
|
if is_verbose: print("text tokens", tokens)
|
||||||
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
||||||
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
||||||
text_tokens[1, :len(tokens)] = tokens
|
text_tokens[1, :len(tokens)] = tokens
|
||||||
|
@ -160,40 +180,57 @@ class MinDalle:
|
||||||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||||
|
|
||||||
if not self.is_reusable: self.init_encoder()
|
if not self.is_reusable: self.init_encoder()
|
||||||
if self.is_verbose: print("encoding text tokens")
|
if is_verbose: print("encoding text tokens")
|
||||||
encoder_state = self.encoder.forward(text_tokens)
|
encoder_state = self.encoder.forward(text_tokens)
|
||||||
if not self.is_reusable: del self.encoder
|
if not self.is_reusable: del self.encoder
|
||||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||||
|
|
||||||
if not self.is_reusable: self.init_decoder()
|
if not self.is_reusable: self.init_decoder()
|
||||||
if self.is_verbose: print("sampling image tokens")
|
|
||||||
if seed > 0: torch.manual_seed(seed)
|
encoder_state, attention_mask, attention_state, image_tokens = (
|
||||||
image_tokens = self.decoder.forward(
|
self.decoder.decode_initial(
|
||||||
image_count,
|
seed,
|
||||||
row_count,
|
grid_size ** 2,
|
||||||
text_tokens,
|
text_tokens,
|
||||||
encoder_state
|
encoder_state
|
||||||
|
)
|
||||||
)
|
)
|
||||||
if not self.is_reusable: del self.decoder
|
|
||||||
return image_tokens
|
for row_index in range(row_count):
|
||||||
|
if is_verbose:
|
||||||
|
print('sampling row {} of {}'.format(row_index + 1, row_count))
|
||||||
|
attention_state, image_tokens = self.decoder.decode_row(
|
||||||
|
row_index,
|
||||||
|
encoder_state,
|
||||||
|
attention_mask,
|
||||||
|
attention_state,
|
||||||
|
image_tokens
|
||||||
|
)
|
||||||
|
if mid_count is not None:
|
||||||
|
if ((row_index + 1) * mid_count) % row_count == 0:
|
||||||
|
tokens = image_tokens[:, 1:]
|
||||||
|
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||||
|
handle_intermediate_image(row_index, image)
|
||||||
|
|
||||||
|
return image_tokens[:, 1:]
|
||||||
|
|
||||||
|
|
||||||
def generate_image(
|
def generate_image(
|
||||||
self,
|
self,
|
||||||
text: str,
|
text: str,
|
||||||
seed: int = -1,
|
seed: int = -1,
|
||||||
grid_size: int = 1
|
grid_size: int = 1,
|
||||||
|
mid_count: int = None,
|
||||||
|
handle_intermediate_image: Callable[[Image.Image], None] = None,
|
||||||
|
is_verbose: bool = False
|
||||||
) -> Image.Image:
|
) -> Image.Image:
|
||||||
image_count = grid_size ** 2
|
image_tokens = self.generate_image_tokens(
|
||||||
row_count = 16
|
text,
|
||||||
image_tokens = self.generate_image_tokens(text, seed, image_count, row_count)
|
seed,
|
||||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
grid_size,
|
||||||
if not self.is_reusable: self.init_detokenizer()
|
row_count = 16,
|
||||||
if self.is_verbose: print("detokenizing image")
|
mid_count = mid_count,
|
||||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
handle_intermediate_image = handle_intermediate_image,
|
||||||
if not self.is_reusable: del self.detokenizer
|
is_verbose = is_verbose
|
||||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
)
|
||||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
return self.image_from_tokens(grid_size, image_tokens, is_verbose)
|
||||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
|
||||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
|
||||||
return image
|
|
|
@ -5,6 +5,9 @@ torch.set_grad_enabled(False)
|
||||||
|
|
||||||
from .dalle_bart_encoder import GLU, AttentionBase
|
from .dalle_bart_encoder import GLU, AttentionBase
|
||||||
|
|
||||||
|
IMAGE_TOKEN_COUNT = 256
|
||||||
|
BLANK_TOKEN = 6965
|
||||||
|
|
||||||
|
|
||||||
class DecoderCrossAttention(AttentionBase):
|
class DecoderCrossAttention(AttentionBase):
|
||||||
def forward(
|
def forward(
|
||||||
|
@ -20,9 +23,9 @@ class DecoderCrossAttention(AttentionBase):
|
||||||
|
|
||||||
|
|
||||||
class DecoderSelfAttention(AttentionBase):
|
class DecoderSelfAttention(AttentionBase):
|
||||||
def __init__(self, head_count: int, embed_count: int, token_count: int):
|
def __init__(self, head_count: int, embed_count: int):
|
||||||
super().__init__(head_count, embed_count)
|
super().__init__(head_count, embed_count)
|
||||||
token_indices = torch.arange(token_count)
|
token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||||
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||||
self.token_indices = token_indices
|
self.token_indices = token_indices
|
||||||
|
|
||||||
|
@ -48,19 +51,13 @@ class DecoderSelfAttention(AttentionBase):
|
||||||
class DecoderLayer(nn.Module):
|
class DecoderLayer(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
image_token_count: int,
|
|
||||||
head_count: int,
|
head_count: int,
|
||||||
embed_count: int,
|
embed_count: int,
|
||||||
glu_embed_count: int
|
glu_embed_count: int
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.image_token_count = image_token_count
|
|
||||||
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||||
self.self_attn = DecoderSelfAttention(
|
self.self_attn = DecoderSelfAttention(head_count, embed_count)
|
||||||
head_count,
|
|
||||||
embed_count,
|
|
||||||
image_token_count
|
|
||||||
)
|
|
||||||
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||||
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||||
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
|
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
|
||||||
|
@ -110,7 +107,6 @@ class DalleBartDecoder(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
image_vocab_count: int,
|
image_vocab_count: int,
|
||||||
image_token_count: int,
|
|
||||||
embed_count: int,
|
embed_count: int,
|
||||||
attention_head_count: int,
|
attention_head_count: int,
|
||||||
glu_embed_count: int,
|
glu_embed_count: int,
|
||||||
|
@ -121,12 +117,10 @@ class DalleBartDecoder(nn.Module):
|
||||||
self.layer_count = layer_count
|
self.layer_count = layer_count
|
||||||
self.embed_count = embed_count
|
self.embed_count = embed_count
|
||||||
self.condition_factor = 10.0
|
self.condition_factor = 10.0
|
||||||
self.image_token_count = image_token_count
|
|
||||||
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
||||||
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
|
||||||
self.layers: List[DecoderLayer] = nn.ModuleList([
|
self.layers: List[DecoderLayer] = nn.ModuleList([
|
||||||
DecoderLayer(
|
DecoderLayer(
|
||||||
image_token_count,
|
|
||||||
attention_head_count,
|
attention_head_count,
|
||||||
embed_count,
|
embed_count,
|
||||||
glu_embed_count
|
glu_embed_count
|
||||||
|
@ -137,7 +131,7 @@ class DalleBartDecoder(nn.Module):
|
||||||
self.final_ln = nn.LayerNorm(embed_count)
|
self.final_ln = nn.LayerNorm(embed_count)
|
||||||
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
||||||
self.zero_prob = torch.zeros([1])
|
self.zero_prob = torch.zeros([1])
|
||||||
self.token_indices = torch.arange(self.image_token_count)
|
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
self.zero_prob = self.zero_prob.cuda()
|
self.zero_prob = self.zero_prob.cuda()
|
||||||
|
@ -183,13 +177,13 @@ class DalleBartDecoder(nn.Module):
|
||||||
torch.exp(logits - top_logits[:, [0]])
|
torch.exp(logits - top_logits[:, [0]])
|
||||||
)
|
)
|
||||||
return probs, attention_state
|
return probs, attention_state
|
||||||
|
|
||||||
|
|
||||||
def decode_row(
|
def decode_row(
|
||||||
self,
|
self,
|
||||||
row_index: int,
|
row_index: int,
|
||||||
attention_mask: BoolTensor,
|
|
||||||
encoder_state: FloatTensor,
|
encoder_state: FloatTensor,
|
||||||
|
attention_mask: BoolTensor,
|
||||||
attention_state: FloatTensor,
|
attention_state: FloatTensor,
|
||||||
image_tokens_sequence: LongTensor
|
image_tokens_sequence: LongTensor
|
||||||
) -> Tuple[FloatTensor, LongTensor]:
|
) -> Tuple[FloatTensor, LongTensor]:
|
||||||
|
@ -202,19 +196,18 @@ class DalleBartDecoder(nn.Module):
|
||||||
prev_tokens = image_tokens_sequence[:, i],
|
prev_tokens = image_tokens_sequence[:, i],
|
||||||
token_index = self.token_indices[[i]]
|
token_index = self.token_indices[[i]]
|
||||||
)
|
)
|
||||||
|
|
||||||
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
|
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
|
||||||
|
|
||||||
return attention_state, image_tokens_sequence
|
return attention_state, image_tokens_sequence
|
||||||
|
|
||||||
|
|
||||||
def forward(
|
def decode_initial(
|
||||||
self,
|
self,
|
||||||
|
seed: int,
|
||||||
image_count: int,
|
image_count: int,
|
||||||
row_count: int,
|
|
||||||
text_tokens: LongTensor,
|
text_tokens: LongTensor,
|
||||||
encoder_state: FloatTensor
|
encoder_state: FloatTensor
|
||||||
) -> LongTensor:
|
) -> Tuple[FloatTensor, FloatTensor, FloatTensor, LongTensor]:
|
||||||
expanded_indices = [0] * image_count + [1] * image_count
|
expanded_indices = [0] * image_count + [1] * image_count
|
||||||
text_tokens = text_tokens[expanded_indices]
|
text_tokens = text_tokens[expanded_indices]
|
||||||
encoder_state = encoder_state[expanded_indices]
|
encoder_state = encoder_state[expanded_indices]
|
||||||
|
@ -223,13 +216,13 @@ class DalleBartDecoder(nn.Module):
|
||||||
attention_state_shape = (
|
attention_state_shape = (
|
||||||
self.layer_count,
|
self.layer_count,
|
||||||
image_count * 4,
|
image_count * 4,
|
||||||
self.image_token_count,
|
IMAGE_TOKEN_COUNT,
|
||||||
self.embed_count
|
self.embed_count
|
||||||
)
|
)
|
||||||
attention_state = torch.zeros(attention_state_shape)
|
attention_state = torch.zeros(attention_state_shape)
|
||||||
image_tokens_sequence = torch.full(
|
image_tokens_sequence = torch.full(
|
||||||
(image_count, self.image_token_count + 1),
|
(image_count, IMAGE_TOKEN_COUNT + 1),
|
||||||
6965, # black token
|
BLANK_TOKEN,
|
||||||
dtype=torch.long
|
dtype=torch.long
|
||||||
)
|
)
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
|
@ -238,13 +231,6 @@ class DalleBartDecoder(nn.Module):
|
||||||
|
|
||||||
image_tokens_sequence[:, 0] = self.start_token[0]
|
image_tokens_sequence[:, 0] = self.start_token[0]
|
||||||
|
|
||||||
for row_index in range(row_count):
|
if seed > 0: torch.manual_seed(seed)
|
||||||
attention_state, image_tokens_sequence = self.decode_row(
|
|
||||||
row_index,
|
return encoder_state, attention_mask, attention_state, image_tokens_sequence
|
||||||
attention_mask,
|
|
||||||
encoder_state,
|
|
||||||
attention_state,
|
|
||||||
image_tokens_sequence
|
|
||||||
)
|
|
||||||
|
|
||||||
return image_tokens_sequence[:, 1:]
|
|
|
@ -2,13 +2,12 @@ from math import inf
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
|
|
||||||
class TextTokenizer:
|
class TextTokenizer:
|
||||||
def __init__(self, vocab: dict, merges: List[str], is_verbose: bool = True):
|
def __init__(self, vocab: dict, merges: List[str]):
|
||||||
self.is_verbose = is_verbose
|
|
||||||
self.token_from_subword = vocab
|
self.token_from_subword = vocab
|
||||||
pairs = [tuple(pair.split()) for pair in merges]
|
pairs = [tuple(pair.split()) for pair in merges]
|
||||||
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
|
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
|
||||||
|
|
||||||
def tokenize(self, text: str) -> List[int]:
|
def tokenize(self, text: str, is_verbose: bool = False) -> List[int]:
|
||||||
sep_token = self.token_from_subword['</s>']
|
sep_token = self.token_from_subword['</s>']
|
||||||
cls_token = self.token_from_subword['<s>']
|
cls_token = self.token_from_subword['<s>']
|
||||||
unk_token = self.token_from_subword['<unk>']
|
unk_token = self.token_from_subword['<unk>']
|
||||||
|
@ -16,11 +15,11 @@ class TextTokenizer:
|
||||||
tokens = [
|
tokens = [
|
||||||
self.token_from_subword.get(subword, unk_token)
|
self.token_from_subword.get(subword, unk_token)
|
||||||
for word in text.split(" ") if len(word) > 0
|
for word in text.split(" ") if len(word) > 0
|
||||||
for subword in self.get_byte_pair_encoding(word)
|
for subword in self.get_byte_pair_encoding(word, is_verbose)
|
||||||
]
|
]
|
||||||
return [cls_token] + tokens + [sep_token]
|
return [cls_token] + tokens + [sep_token]
|
||||||
|
|
||||||
def get_byte_pair_encoding(self, word: str) -> List[str]:
|
def get_byte_pair_encoding(self, word: str, is_verbose: bool) -> List[str]:
|
||||||
def get_pair_rank(pair: Tuple[str, str]) -> int:
|
def get_pair_rank(pair: Tuple[str, str]) -> int:
|
||||||
return self.rank_from_pair.get(pair, inf)
|
return self.rank_from_pair.get(pair, inf)
|
||||||
|
|
||||||
|
@ -36,5 +35,5 @@ class TextTokenizer:
|
||||||
(subwords[i + 2:] if i + 2 < len(subwords) else [])
|
(subwords[i + 2:] if i + 2 < len(subwords) else [])
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.is_verbose: print(subwords)
|
if is_verbose: print(subwords)
|
||||||
return subwords
|
return subwords
|
2
setup.py
2
setup.py
|
@ -5,7 +5,7 @@ setuptools.setup(
|
||||||
name='min-dalle',
|
name='min-dalle',
|
||||||
description = 'min(DALL·E)',
|
description = 'min(DALL·E)',
|
||||||
long_description=(Path(__file__).parent / "README.rst").read_text(),
|
long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||||
version='0.2.17',
|
version='0.2.21',
|
||||||
author='Brett Kuprel',
|
author='Brett Kuprel',
|
||||||
author_email='brkuprel@gmail.com',
|
author_email='brkuprel@gmail.com',
|
||||||
url='https://github.com/kuprel/min-dalle',
|
url='https://github.com/kuprel/min-dalle',
|
||||||
|
|
Loading…
Reference in New Issue
Block a user