display intermediate images
This commit is contained in:
@@ -1,10 +1,11 @@
|
||||
import os
|
||||
from PIL import Image
|
||||
import numpy
|
||||
from torch import LongTensor
|
||||
from torch import LongTensor, FloatTensor
|
||||
import torch
|
||||
import json
|
||||
import requests
|
||||
from typing import Callable, Tuple
|
||||
torch.set_grad_enabled(False)
|
||||
torch.set_num_threads(os.cpu_count())
|
||||
|
||||
@@ -26,7 +27,6 @@ class MinDalle:
|
||||
self.is_reusable = is_reusable
|
||||
self.is_verbose = is_verbose
|
||||
self.text_token_count = 64
|
||||
self.image_token_count = 256
|
||||
self.layer_count = 24 if is_mega else 12
|
||||
self.attention_head_count = 32 if is_mega else 16
|
||||
self.embed_count = 2048 if is_mega else 1024
|
||||
@@ -91,7 +91,7 @@ class MinDalle:
|
||||
vocab = json.load(f)
|
||||
with open(self.merges_path, 'r', encoding='utf8') as f:
|
||||
merges = f.read().split("\n")[1:-1]
|
||||
self.tokenizer = TextTokenizer(vocab, merges, is_verbose=self.is_verbose)
|
||||
self.tokenizer = TextTokenizer(vocab, merges)
|
||||
|
||||
|
||||
def init_encoder(self):
|
||||
@@ -117,7 +117,6 @@ class MinDalle:
|
||||
if not is_downloaded: self.download_decoder()
|
||||
if self.is_verbose: print("initializing DalleBartDecoder")
|
||||
self.decoder = DalleBartDecoder(
|
||||
image_token_count = self.image_token_count,
|
||||
image_vocab_count = self.image_vocab_count,
|
||||
attention_head_count = self.attention_head_count,
|
||||
embed_count = self.embed_count,
|
||||
@@ -142,16 +141,37 @@ class MinDalle:
|
||||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||
|
||||
|
||||
def image_from_tokens(
|
||||
self,
|
||||
grid_size: int,
|
||||
image_tokens: LongTensor,
|
||||
is_verbose: bool = False
|
||||
) -> Image.Image:
|
||||
if not self.is_reusable: del self.decoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
return image
|
||||
|
||||
|
||||
def generate_image_tokens(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
image_count: int,
|
||||
row_count: int
|
||||
grid_size: int,
|
||||
row_count: int,
|
||||
mid_count: int = None,
|
||||
handle_intermediate_image: Callable[[int, Image.Image], None] = None,
|
||||
is_verbose: bool = False
|
||||
) -> LongTensor:
|
||||
if self.is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text)
|
||||
if self.is_verbose: print("text tokens", tokens)
|
||||
if is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||
if is_verbose: print("text tokens", tokens)
|
||||
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
||||
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
||||
text_tokens[1, :len(tokens)] = tokens
|
||||
@@ -160,40 +180,57 @@ class MinDalle:
|
||||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||
|
||||
if not self.is_reusable: self.init_encoder()
|
||||
if self.is_verbose: print("encoding text tokens")
|
||||
if is_verbose: print("encoding text tokens")
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
if not self.is_reusable: del self.encoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
if self.is_verbose: print("sampling image tokens")
|
||||
if seed > 0: torch.manual_seed(seed)
|
||||
image_tokens = self.decoder.forward(
|
||||
image_count,
|
||||
row_count,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
|
||||
encoder_state, attention_mask, attention_state, image_tokens = (
|
||||
self.decoder.decode_initial(
|
||||
seed,
|
||||
grid_size ** 2,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
)
|
||||
)
|
||||
if not self.is_reusable: del self.decoder
|
||||
return image_tokens
|
||||
|
||||
|
||||
for row_index in range(row_count):
|
||||
if is_verbose:
|
||||
print('sampling row {} of {}'.format(row_index + 1, row_count))
|
||||
attention_state, image_tokens = self.decoder.decode_row(
|
||||
row_index,
|
||||
encoder_state,
|
||||
attention_mask,
|
||||
attention_state,
|
||||
image_tokens
|
||||
)
|
||||
if mid_count is not None:
|
||||
if ((row_index + 1) * mid_count) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||
handle_intermediate_image(row_index, image)
|
||||
|
||||
return image_tokens[:, 1:]
|
||||
|
||||
|
||||
def generate_image(
|
||||
self,
|
||||
text: str,
|
||||
text: str,
|
||||
seed: int = -1,
|
||||
grid_size: int = 1
|
||||
grid_size: int = 1,
|
||||
mid_count: int = None,
|
||||
handle_intermediate_image: Callable[[Image.Image], None] = None,
|
||||
is_verbose: bool = False
|
||||
) -> Image.Image:
|
||||
image_count = grid_size ** 2
|
||||
row_count = 16
|
||||
image_tokens = self.generate_image_tokens(text, seed, image_count, row_count)
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if self.is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
return image
|
||||
image_tokens = self.generate_image_tokens(
|
||||
text,
|
||||
seed,
|
||||
grid_size,
|
||||
row_count = 16,
|
||||
mid_count = mid_count,
|
||||
handle_intermediate_image = handle_intermediate_image,
|
||||
is_verbose = is_verbose
|
||||
)
|
||||
return self.image_from_tokens(grid_size, image_tokens, is_verbose)
|
@@ -5,6 +5,9 @@ torch.set_grad_enabled(False)
|
||||
|
||||
from .dalle_bart_encoder import GLU, AttentionBase
|
||||
|
||||
IMAGE_TOKEN_COUNT = 256
|
||||
BLANK_TOKEN = 6965
|
||||
|
||||
|
||||
class DecoderCrossAttention(AttentionBase):
|
||||
def forward(
|
||||
@@ -20,9 +23,9 @@ class DecoderCrossAttention(AttentionBase):
|
||||
|
||||
|
||||
class DecoderSelfAttention(AttentionBase):
|
||||
def __init__(self, head_count: int, embed_count: int, token_count: int):
|
||||
def __init__(self, head_count: int, embed_count: int):
|
||||
super().__init__(head_count, embed_count)
|
||||
token_indices = torch.arange(token_count)
|
||||
token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||
self.token_indices = token_indices
|
||||
|
||||
@@ -48,19 +51,13 @@ class DecoderSelfAttention(AttentionBase):
|
||||
class DecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_token_count: int,
|
||||
head_count: int,
|
||||
embed_count: int,
|
||||
glu_embed_count: int
|
||||
):
|
||||
super().__init__()
|
||||
self.image_token_count = image_token_count
|
||||
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.self_attn = DecoderSelfAttention(
|
||||
head_count,
|
||||
embed_count,
|
||||
image_token_count
|
||||
)
|
||||
self.self_attn = DecoderSelfAttention(head_count, embed_count)
|
||||
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
|
||||
@@ -110,7 +107,6 @@ class DalleBartDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_vocab_count: int,
|
||||
image_token_count: int,
|
||||
embed_count: int,
|
||||
attention_head_count: int,
|
||||
glu_embed_count: int,
|
||||
@@ -121,12 +117,10 @@ class DalleBartDecoder(nn.Module):
|
||||
self.layer_count = layer_count
|
||||
self.embed_count = embed_count
|
||||
self.condition_factor = 10.0
|
||||
self.image_token_count = image_token_count
|
||||
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
||||
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
||||
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
|
||||
self.layers: List[DecoderLayer] = nn.ModuleList([
|
||||
DecoderLayer(
|
||||
image_token_count,
|
||||
attention_head_count,
|
||||
embed_count,
|
||||
glu_embed_count
|
||||
@@ -137,7 +131,7 @@ class DalleBartDecoder(nn.Module):
|
||||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
||||
self.zero_prob = torch.zeros([1])
|
||||
self.token_indices = torch.arange(self.image_token_count)
|
||||
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||
if torch.cuda.is_available():
|
||||
self.zero_prob = self.zero_prob.cuda()
|
||||
@@ -183,13 +177,13 @@ class DalleBartDecoder(nn.Module):
|
||||
torch.exp(logits - top_logits[:, [0]])
|
||||
)
|
||||
return probs, attention_state
|
||||
|
||||
|
||||
|
||||
def decode_row(
|
||||
self,
|
||||
row_index: int,
|
||||
attention_mask: BoolTensor,
|
||||
encoder_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
attention_state: FloatTensor,
|
||||
image_tokens_sequence: LongTensor
|
||||
) -> Tuple[FloatTensor, LongTensor]:
|
||||
@@ -202,19 +196,18 @@ class DalleBartDecoder(nn.Module):
|
||||
prev_tokens = image_tokens_sequence[:, i],
|
||||
token_index = self.token_indices[[i]]
|
||||
)
|
||||
|
||||
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
|
||||
|
||||
return attention_state, image_tokens_sequence
|
||||
|
||||
|
||||
def forward(
|
||||
|
||||
def decode_initial(
|
||||
self,
|
||||
seed: int,
|
||||
image_count: int,
|
||||
row_count: int,
|
||||
text_tokens: LongTensor,
|
||||
encoder_state: FloatTensor
|
||||
) -> LongTensor:
|
||||
) -> Tuple[FloatTensor, FloatTensor, FloatTensor, LongTensor]:
|
||||
expanded_indices = [0] * image_count + [1] * image_count
|
||||
text_tokens = text_tokens[expanded_indices]
|
||||
encoder_state = encoder_state[expanded_indices]
|
||||
@@ -223,13 +216,13 @@ class DalleBartDecoder(nn.Module):
|
||||
attention_state_shape = (
|
||||
self.layer_count,
|
||||
image_count * 4,
|
||||
self.image_token_count,
|
||||
IMAGE_TOKEN_COUNT,
|
||||
self.embed_count
|
||||
)
|
||||
attention_state = torch.zeros(attention_state_shape)
|
||||
image_tokens_sequence = torch.full(
|
||||
(image_count, self.image_token_count + 1),
|
||||
6965, # black token
|
||||
(image_count, IMAGE_TOKEN_COUNT + 1),
|
||||
BLANK_TOKEN,
|
||||
dtype=torch.long
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
@@ -238,13 +231,6 @@ class DalleBartDecoder(nn.Module):
|
||||
|
||||
image_tokens_sequence[:, 0] = self.start_token[0]
|
||||
|
||||
for row_index in range(row_count):
|
||||
attention_state, image_tokens_sequence = self.decode_row(
|
||||
row_index,
|
||||
attention_mask,
|
||||
encoder_state,
|
||||
attention_state,
|
||||
image_tokens_sequence
|
||||
)
|
||||
|
||||
return image_tokens_sequence[:, 1:]
|
||||
if seed > 0: torch.manual_seed(seed)
|
||||
|
||||
return encoder_state, attention_mask, attention_state, image_tokens_sequence
|
@@ -2,13 +2,12 @@ from math import inf
|
||||
from typing import List, Tuple
|
||||
|
||||
class TextTokenizer:
|
||||
def __init__(self, vocab: dict, merges: List[str], is_verbose: bool = True):
|
||||
self.is_verbose = is_verbose
|
||||
def __init__(self, vocab: dict, merges: List[str]):
|
||||
self.token_from_subword = vocab
|
||||
pairs = [tuple(pair.split()) for pair in merges]
|
||||
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
|
||||
|
||||
def tokenize(self, text: str) -> List[int]:
|
||||
def tokenize(self, text: str, is_verbose: bool = False) -> List[int]:
|
||||
sep_token = self.token_from_subword['</s>']
|
||||
cls_token = self.token_from_subword['<s>']
|
||||
unk_token = self.token_from_subword['<unk>']
|
||||
@@ -16,11 +15,11 @@ class TextTokenizer:
|
||||
tokens = [
|
||||
self.token_from_subword.get(subword, unk_token)
|
||||
for word in text.split(" ") if len(word) > 0
|
||||
for subword in self.get_byte_pair_encoding(word)
|
||||
for subword in self.get_byte_pair_encoding(word, is_verbose)
|
||||
]
|
||||
return [cls_token] + tokens + [sep_token]
|
||||
|
||||
def get_byte_pair_encoding(self, word: str) -> List[str]:
|
||||
def get_byte_pair_encoding(self, word: str, is_verbose: bool) -> List[str]:
|
||||
def get_pair_rank(pair: Tuple[str, str]) -> int:
|
||||
return self.rank_from_pair.get(pair, inf)
|
||||
|
||||
@@ -36,5 +35,5 @@ class TextTokenizer:
|
||||
(subwords[i + 2:] if i + 2 < len(subwords) else [])
|
||||
)
|
||||
|
||||
if self.is_verbose: print(subwords)
|
||||
if is_verbose: print(subwords)
|
||||
return subwords
|
Reference in New Issue
Block a user