moved flax model and conversion code to separate repository

This commit is contained in:
Brett Kuprel
2022-07-01 14:06:50 -04:00
parent febd18df77
commit 07ce93d5f8
13 changed files with 57 additions and 712 deletions

View File

@@ -1,247 +0,0 @@
import jax, flax
from jax import lax, numpy as jnp
from flax import linen as nn
from typing import Tuple
from .dalle_bart_encoder_flax import GLUFlax, AttentionFlax
class DecoderCrossAttentionFlax(AttentionFlax):
def __call__(
self,
decoder_state: jnp.ndarray,
encoder_state: jnp.ndarray,
attention_mask: jnp.ndarray,
) -> jnp.ndarray:
keys = self.k_proj(encoder_state)
values = self.v_proj(encoder_state)
queries = self.q_proj(decoder_state)
return self.forward(keys, values, queries, attention_mask)
class DecoderSelfAttentionFlax(AttentionFlax):
def __call__(
self,
decoder_state: jnp.ndarray,
attention_state: jnp.ndarray,
attention_mask: jnp.ndarray,
state_index: tuple
) -> Tuple[jnp.ndarray, jnp.ndarray]:
keys = self.k_proj(decoder_state)
values = self.v_proj(decoder_state)
queries = self.q_proj(decoder_state)
attention_state = lax.dynamic_update_slice(
attention_state,
jnp.concatenate([keys, values]).astype(jnp.float32),
state_index
)
batch_count = decoder_state.shape[0]
keys = attention_state[:batch_count]
values = attention_state[batch_count:]
decoder_state = self.forward(
keys,
values,
queries,
attention_mask
).astype(decoder_state.dtype)
return decoder_state, attention_state
class DalleBartDecoderLayerFlax(nn.Module):
image_token_count: int
attention_head_count: int
embed_count: int
glu_embed_count: int
def setup(self):
self.pre_self_attn_layer_norm = nn.LayerNorm(use_scale=False)
self.self_attn = DecoderSelfAttentionFlax(
self.attention_head_count,
self.embed_count
)
self.self_attn_layer_norm = nn.LayerNorm()
self.pre_encoder_attn_layer_norm = nn.LayerNorm(use_scale=False)
self.encoder_attn = DecoderCrossAttentionFlax(
self.attention_head_count,
self.embed_count,
)
self.encoder_attn_layer_norm = nn.LayerNorm()
self.glu = GLUFlax(self.embed_count, self.glu_embed_count)
@nn.compact
def __call__(
self,
decoder_state: jnp.ndarray,
encoder_state: jnp.ndarray,
attention_state: jnp.ndarray,
attention_mask: jnp.ndarray,
token_index: int
) -> Tuple[jnp.ndarray, jnp.ndarray]:
# Self Attention
residual = decoder_state
decoder_state = self.pre_self_attn_layer_norm(decoder_state)
self_attention_mask = jnp.tile(
jnp.arange(self.image_token_count) < token_index + 1,
(decoder_state.shape[0], 1)
)
decoder_state, attention_state = self.self_attn(
decoder_state,
attention_state,
self_attention_mask,
(0, token_index, 0)
)
decoder_state = self.self_attn_layer_norm(decoder_state)
decoder_state = residual + decoder_state
# Cross Attention
residual = decoder_state
decoder_state = self.pre_encoder_attn_layer_norm(decoder_state)
decoder_state = self.encoder_attn(
decoder_state,
encoder_state,
attention_mask
)
decoder_state = self.encoder_attn_layer_norm(decoder_state)
decoder_state = residual + decoder_state
# Feed forward
residual = decoder_state
decoder_state = self.glu(decoder_state)
decoder_state = residual + decoder_state
return decoder_state, attention_state
@flax.struct.dataclass
class SampleState:
prev_token: jnp.ndarray
prng_key: jnp.ndarray
attention_state: jnp.ndarray
def super_conditioned(logits: jnp.ndarray, a: float) -> jnp.ndarray:
return (1 - a) * logits[0, -1] + a * logits[1, -1]
def keep_top_k(logits: jnp.ndarray, k: int) -> jnp.ndarray:
top_logits, _ = lax.top_k(logits, k)
suppressed = -jnp.inf * jnp.ones_like(logits)
return lax.select(logits < top_logits[-1], suppressed, logits)
class DalleBartDecoderFlax(nn.Module):
image_token_count: int
image_vocab_count: int
attention_head_count: int
embed_count: int
glu_embed_count: int
layer_count: int
start_token: int
def setup(self):
self.embed_tokens = nn.Embed(
self.image_vocab_count + 1,
self.embed_count
)
self.embed_positions = nn.Embed(
self.image_token_count,
self.embed_count
)
self.layers = nn.scan(
DalleBartDecoderLayerFlax,
variable_axes = { "params": 0 },
split_rngs = { "params": True },
in_axes = (nn.broadcast, 0, nn.broadcast, nn.broadcast),
out_axes = 0,
length=self.layer_count,
)(
self.image_token_count,
self.attention_head_count,
self.embed_count,
self.glu_embed_count,
name="FlaxBartDecoderLayers"
)
self.layernorm_embedding = nn.LayerNorm()
self.final_ln = nn.LayerNorm(use_scale=False)
self.lm_head = nn.Dense(self.image_vocab_count + 1, use_bias=False)
def __call__(
self,
encoder_state: jnp.ndarray,
attention_state: jnp.ndarray,
attention_mask: jnp.ndarray,
prev_token: int,
token_index: int
) -> Tuple[jnp.ndarray, jnp.ndarray]:
batch_count = encoder_state.shape[0]
ones = jnp.ones((batch_count, 1), dtype=jnp.int32)
decoder_state = self.embed_tokens(prev_token * ones)
decoder_state += self.embed_positions(token_index * ones)
decoder_state = self.layernorm_embedding(decoder_state)
decoder_state, attention_state = self.layers(
decoder_state,
encoder_state,
attention_state,
attention_mask,
token_index
)
decoder_state = self.final_ln(decoder_state)
decoder_state = self.lm_head(decoder_state)
return decoder_state, attention_state
def sample_image_tokens(
self,
text_tokens: jnp.ndarray,
encoder_state: jnp.ndarray,
prng_key: jax.random.PRNGKey,
params: dict
) -> jnp.ndarray:
attention_mask = jnp.not_equal(text_tokens, 1)
def sample_next_image_token(
state: SampleState,
token_index: int
) -> Tuple[SampleState, jnp.ndarray]:
logits, attention_state = self.apply(
{ 'params': params },
encoder_state = encoder_state,
attention_state = state.attention_state,
attention_mask = attention_mask,
prev_token = state.prev_token,
token_index = token_index
)
logits = super_conditioned(logits, 10.0)
logits = keep_top_k(logits, k=50)
prng_key, prng_key_next = jax.random.split(state.prng_key)
next_token = jax.random.categorical(prng_key, logits, axis=-1)
state = SampleState(
prev_token = next_token,
prng_key = prng_key_next,
attention_state = attention_state
)
return state, next_token
batch_count = encoder_state.shape[0]
attention_state_shape = (
self.layer_count,
batch_count * 2,
self.image_token_count,
self.embed_count
)
initial_state = SampleState(
prev_token = self.start_token,
prng_key = prng_key,
attention_state = jnp.zeros(attention_state_shape)
)
_, image_tokens = lax.scan(
sample_next_image_token,
initial_state,
jnp.arange(self.image_token_count)
)
return image_tokens

View File

@@ -1,151 +0,0 @@
from functools import partial
import jax
from jax import lax, numpy as jnp
from flax import linen as nn
class GLUFlax(nn.Module):
count_in_out: int
count_middle: int
def setup(self):
self.gelu = partial(nn.gelu, approximate=False)
self.ln0 = nn.LayerNorm(use_scale=False)
self.ln1 = nn.LayerNorm(use_scale=False)
self.fc0 = nn.Dense(self.count_middle, use_bias=False)
self.fc1 = nn.Dense(self.count_middle, use_bias=False)
self.fc2 = nn.Dense(self.count_in_out, use_bias=False)
@nn.compact
def __call__(self, z: jnp.ndarray) -> jnp.ndarray:
z = self.ln0(z)
z = self.ln1(self.gelu(self.fc0(z)) * self.fc1(z))
z = self.fc2(z)
return z
class AttentionFlax(nn.Module):
head_count: int
embed_count: int
def setup(self):
self.q_proj = nn.Dense(self.embed_count, use_bias=False)
self.k_proj = nn.Dense(self.embed_count, use_bias=False)
self.v_proj = nn.Dense(self.embed_count, use_bias=False)
self.out_proj = nn.Dense(self.embed_count, use_bias=False)
def forward(
self,
keys: jnp.ndarray,
values: jnp.ndarray,
queries: jnp.ndarray,
attention_mask: jnp.ndarray
) -> jnp.ndarray:
keys = keys.reshape(keys.shape[:2] + (self.head_count, -1))
values = values.reshape(values.shape[:2] + (self.head_count, -1))
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
queries /= queries.shape[-1] ** 0.5
attention_bias: jnp.ndarray = lax.select(
attention_mask,
jnp.full(attention_mask.shape, 0.0),
jnp.full(attention_mask.shape, -jnp.inf),
)
attention_weights: jnp.ndarray = jnp.einsum(
'bqhd,bkhd->bhqk',
queries,
keys
)
attention_weights += attention_bias[:, None, None, :]
attention_weights = jax.nn.softmax(attention_weights)
attention_output: jnp.ndarray = jnp.einsum(
"bhqk,bkhd->bqhd",
attention_weights,
values
)
shape = attention_output.shape[:2] + (self.embed_count,)
attention_output = attention_output.reshape(shape)
attention_output = self.out_proj(attention_output)
return attention_output
class EncoderSelfAttentionFlax(AttentionFlax):
def __call__(
self,
encoder_state: jnp.ndarray,
attention_mask: jnp.ndarray
) -> jnp.ndarray:
keys = self.k_proj(encoder_state)
values = self.v_proj(encoder_state)
queries = self.q_proj(encoder_state)
return self.forward(keys, values, queries, attention_mask)
class DalleBartEncoderLayerFlax(nn.Module):
attention_head_count: int
embed_count: int
glu_embed_count: int
def setup(self):
self.pre_self_attn_layer_norm = nn.LayerNorm(use_scale=False)
self.self_attn = EncoderSelfAttentionFlax(
self.attention_head_count,
self.embed_count
)
self.self_attn_layer_norm = nn.LayerNorm()
self.glu = GLUFlax(self.embed_count, self.glu_embed_count)
@nn.compact
def __call__(
self,
encoder_state: jnp.ndarray,
attention_mask: jnp.ndarray
) -> jnp.ndarray:
residual = encoder_state
encoder_state = self.pre_self_attn_layer_norm(encoder_state)
encoder_state = self.self_attn(encoder_state, attention_mask)
encoder_state = self.self_attn_layer_norm(encoder_state)
encoder_state = residual + encoder_state
residual = encoder_state
encoder_state = self.glu(encoder_state)
encoder_state = residual + encoder_state
return encoder_state, None
class DalleBartEncoderFlax(nn.Module):
attention_head_count: int
embed_count: int
glu_embed_count: int
text_token_count: int
text_vocab_count: int
layer_count: int
def setup(self):
self.embed_tokens = nn.Embed(self.text_vocab_count, self.embed_count)
self.embed_positions = nn.Embed(self.text_token_count, self.embed_count)
self.layers = nn.scan(
DalleBartEncoderLayerFlax,
variable_axes = { "params": 0 },
split_rngs = { "params": True },
in_axes = nn.broadcast,
length = self.layer_count
)(
self.attention_head_count,
self.embed_count,
self.glu_embed_count,
name="FlaxBartEncoderLayers"
)
self.layernorm_embedding = nn.LayerNorm()
self.final_ln = nn.LayerNorm(use_scale=False)
def __call__(self, text_tokens: jnp.ndarray) -> jnp.ndarray:
batch_count, token_count = text_tokens.shape
pose_tokens = jnp.tile(jnp.arange(token_count), (batch_count, 1))
attention_mask = jnp.not_equal(text_tokens, 1)
encoder_state = (
self.embed_tokens(text_tokens) +
self.embed_positions(pose_tokens)
)
encoder_state = self.layernorm_embedding(encoder_state)
encoder_state, _ = self.layers(encoder_state, attention_mask)
encoder_state = self.final_ln(encoder_state)
return encoder_state