2022-06-27 19:46:04 +00:00
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
from PIL import Image
|
|
|
|
|
2022-06-29 13:42:12 +00:00
|
|
|
from min_dalle.min_dalle_torch import MinDalleTorch
|
|
|
|
from min_dalle.min_dalle_flax import MinDalleFlax
|
2022-06-27 19:46:04 +00:00
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
2022-06-27 20:49:42 +00:00
|
|
|
parser.add_argument('--mega', action='store_true')
|
|
|
|
parser.add_argument('--no-mega', dest='mega', action='store_false')
|
|
|
|
parser.set_defaults(mega=False)
|
|
|
|
parser.add_argument('--torch', action='store_true')
|
|
|
|
parser.add_argument('--no-torch', dest='torch', action='store_false')
|
|
|
|
parser.set_defaults(torch=False)
|
2022-06-29 15:46:19 +00:00
|
|
|
parser.add_argument('--text', type=str, default='alien life')
|
|
|
|
parser.add_argument('--seed', type=int, default=7)
|
2022-06-27 20:49:42 +00:00
|
|
|
parser.add_argument('--image_path', type=str, default='generated')
|
2022-06-29 13:42:12 +00:00
|
|
|
parser.add_argument('--sample_token_count', type=int, default=256) # for debugging
|
2022-06-27 19:46:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
def ascii_from_image(image: Image.Image, size: int) -> str:
|
|
|
|
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
|
|
|
|
chars = list('.,;/IOX')
|
|
|
|
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
|
|
|
|
chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)]
|
|
|
|
return '\n'.join(''.join(row) for row in chars)
|
|
|
|
|
|
|
|
|
2022-06-27 20:49:42 +00:00
|
|
|
def save_image(image: Image.Image, path: str):
|
2022-06-27 19:46:04 +00:00
|
|
|
if os.path.isdir(path):
|
|
|
|
path = os.path.join(path, 'generated.png')
|
|
|
|
elif not path.endswith('.png'):
|
|
|
|
path += '.png'
|
|
|
|
print("saving image to", path)
|
|
|
|
image.save(path)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
2022-06-29 13:42:12 +00:00
|
|
|
def generate_image(
|
|
|
|
is_torch: bool,
|
|
|
|
is_mega: bool,
|
|
|
|
text: str,
|
|
|
|
seed: int,
|
|
|
|
image_path: str,
|
|
|
|
sample_token_count: int
|
|
|
|
):
|
|
|
|
if is_torch:
|
|
|
|
image_generator = MinDalleTorch(is_mega, sample_token_count)
|
|
|
|
image_tokens = image_generator.generate_image_tokens(text, seed)
|
|
|
|
|
|
|
|
if sample_token_count < image_generator.config['image_length']:
|
|
|
|
print('image tokens', list(image_tokens.to('cpu').detach().numpy()))
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
image = image_generator.generate_image(text, seed)
|
|
|
|
|
|
|
|
else:
|
|
|
|
image_generator = MinDalleFlax(is_mega)
|
|
|
|
image = image_generator.generate_image(text, seed)
|
|
|
|
|
|
|
|
save_image(image, image_path)
|
|
|
|
print(ascii_from_image(image, size=128))
|
|
|
|
|
|
|
|
|
2022-06-27 19:46:04 +00:00
|
|
|
if __name__ == '__main__':
|
|
|
|
args = parser.parse_args()
|
2022-06-27 20:49:42 +00:00
|
|
|
print(args)
|
2022-06-29 13:42:12 +00:00
|
|
|
generate_image(
|
|
|
|
is_torch=args.torch,
|
|
|
|
is_mega=args.mega,
|
|
|
|
text=args.text,
|
|
|
|
seed=args.seed,
|
|
|
|
image_path=args.image_path,
|
|
|
|
sample_token_count=args.sample_token_count
|
|
|
|
)
|