min-dalle-test/models/dalle_bart_decoder_flax.py

288 lines
9.5 KiB
Python
Raw Normal View History

2022-06-27 15:57:56 +00:00
import jax, flax
from jax import lax, numpy as jnp
from flax import linen as nn
from typing import Tuple
from .dalle_bart_encoder_flax import GLUFlax, AttentionFlax
class DecoderCrossAttentionFlax(AttentionFlax):
def __call__(
self,
decoder_state: jnp.ndarray,
encoder_state: jnp.ndarray,
attention_mask: jnp.ndarray,
) -> jnp.ndarray:
keys: jnp.ndarray = self.k_proj(encoder_state)
values: jnp.ndarray = self.v_proj(encoder_state)
queries: jnp.ndarray = self.q_proj(decoder_state)
query_shape = queries.shape[:2] + (self.head_count, -1)
key_value_shape = keys.shape[:2] + (self.head_count, -1)
keys = keys.reshape(key_value_shape)
values = values.reshape(key_value_shape)
queries = queries.reshape(query_shape)
queries /= queries.shape[-1] ** 0.5
return self.forward(keys, values, queries, attention_mask)
class DecoderSelfAttentionFlax(AttentionFlax):
def __call__(self,
decoder_state: jnp.ndarray,
keys_state: jnp.ndarray,
values_state: jnp.ndarray,
attention_mask: jnp.ndarray,
state_index: tuple
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, jnp.ndarray]]:
shape_split = decoder_state.shape[:2] + (self.head_count, -1)
keys_state = lax.dynamic_update_slice(
keys_state,
self.k_proj(decoder_state).reshape(shape_split),
state_index
)
values_state = lax.dynamic_update_slice(
values_state,
self.v_proj(decoder_state).reshape(shape_split),
state_index
)
queries = self.q_proj(decoder_state).reshape(shape_split)
queries /= queries.shape[-1] ** 0.5
decoder_state = self.forward(
keys_state,
values_state,
queries,
attention_mask
)
return decoder_state, (keys_state, values_state)
class DalleBartDecoderLayerFlax(nn.Module):
image_token_count: int
attention_head_count: int
embed_count: int
glu_embed_count: int
def setup(self):
self.pre_self_attn_layer_norm = nn.LayerNorm(use_scale=False)
self.self_attn = DecoderSelfAttentionFlax(
self.attention_head_count,
self.embed_count
)
self.self_attn_layer_norm = nn.LayerNorm()
self.pre_encoder_attn_layer_norm = nn.LayerNorm(use_scale=False)
self.encoder_attn = DecoderCrossAttentionFlax(
self.attention_head_count,
self.embed_count,
)
self.encoder_attn_layer_norm = nn.LayerNorm()
self.glu = GLUFlax(self.embed_count, self.glu_embed_count)
@nn.compact
def __call__(self,
decoder_state: jnp.ndarray,
encoder_state: jnp.ndarray,
keys_state: jnp.ndarray,
values_state: jnp.ndarray,
attention_mask: jnp.ndarray,
token_index: int
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, jnp.ndarray]]:
# Self Attention
residual = decoder_state
decoder_state = self.pre_self_attn_layer_norm(decoder_state)
self_attention_mask = jnp.tile(
jnp.arange(self.image_token_count) < token_index + 1,
(decoder_state.shape[0], 1)
)
decoder_state, keys_values_state = self.self_attn(
decoder_state,
keys_state,
values_state,
self_attention_mask,
(0, token_index, 0, 0)
)
decoder_state = self.self_attn_layer_norm(decoder_state)
decoder_state = residual + decoder_state
# Cross Attention
residual = decoder_state
decoder_state = self.pre_encoder_attn_layer_norm(decoder_state)
decoder_state = self.encoder_attn(
decoder_state,
encoder_state,
attention_mask
)
decoder_state = self.encoder_attn_layer_norm(decoder_state)
decoder_state = residual + decoder_state
# Feed forward
residual = decoder_state
decoder_state = self.glu(decoder_state)
decoder_state = residual + decoder_state
return decoder_state, keys_values_state
@flax.struct.dataclass
class SampleState:
prev_token: jnp.ndarray
prng_key: jnp.ndarray
keys_state: jnp.ndarray
values_state: jnp.ndarray
def super_conditioned(logits: jnp.ndarray, a: float) -> jnp.ndarray:
return a * logits[0, -1] + (1 - a) * logits[1, -1]
def keep_top_k(logits: jnp.ndarray, k: int) -> jnp.ndarray:
top_logits, top_tokens = lax.top_k(logits, k)
suppressed = -jnp.inf * jnp.ones_like(logits)
return lax.select(logits < top_logits[-1], suppressed, logits)
class DalleBartDecoderFlax(nn.Module):
image_token_count: int
text_token_count: int
image_vocab_count: int
attention_head_count: int
embed_count: int
glu_embed_count: int
layer_count: int
start_token: int
def setup(self):
self.embed_tokens = nn.Embed(
self.image_vocab_count + 1,
self.embed_count
)
self.embed_positions = nn.Embed(
self.image_token_count,
self.embed_count
)
self.layers = nn.scan(
DalleBartDecoderLayerFlax,
variable_axes = { "params": 0, "cache": 0 },
split_rngs = { "params": True },
in_axes = (nn.broadcast, 0, 0, nn.broadcast, nn.broadcast),
out_axes = (0, 0),
length=self.layer_count,
)(
self.image_token_count,
self.attention_head_count,
self.embed_count,
self.glu_embed_count,
name="FlaxBartDecoderLayers"
)
self.layernorm_embedding = nn.LayerNorm()
self.final_ln = nn.LayerNorm(use_scale=False)
self.lm_head = nn.Dense(self.image_vocab_count + 1, use_bias=False)
def __call__(self,
encoder_state: jnp.ndarray,
keys_state: jnp.ndarray,
values_state: jnp.ndarray,
attention_mask: jnp.ndarray,
prev_token: int,
token_index: int
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:
batch_count = encoder_state.shape[0]
ones = jnp.ones((batch_count, 1), dtype=jnp.int32)
decoder_state = self.embed_tokens(prev_token * ones)
decoder_state += self.embed_positions(token_index * ones)
decoder_state = self.layernorm_embedding(decoder_state)
decoder_state, (keys_state, values_state) = self.layers(
decoder_state,
encoder_state,
keys_state,
values_state,
attention_mask,
token_index
)
decoder_state = self.final_ln(decoder_state)
decoder_state = self.lm_head(decoder_state)
return decoder_state, keys_state, values_state
def compute_logits(self,
text_tokens: jnp.ndarray,
encoder_state: jnp.ndarray,
params: dict
) -> jnp.ndarray:
batch_count = encoder_state.shape[0]
state_shape = (
self.layer_count,
batch_count,
self.image_token_count,
self.attention_head_count,
self.embed_count // self.attention_head_count
)
keys_state = jnp.zeros(state_shape)
values_state = jnp.zeros(state_shape)
logits, _, _ = self.apply(
{ 'params': params },
encoder_state = encoder_state,
keys_state = keys_state,
values_state = values_state,
attention_mask = jnp.not_equal(text_tokens, 1),
prev_token = self.start_token,
token_index = 0
)
return super_conditioned(logits, 10.0)
def sample_image_tokens(self,
text_tokens: jnp.ndarray,
encoder_state: jnp.ndarray,
prng_key: jax.random.PRNGKey,
params: dict
) -> jnp.ndarray:
attention_mask = jnp.not_equal(text_tokens, 1)
def sample_next_image_token(
state: SampleState,
token_index: int
) -> Tuple[SampleState, None]:
logits, keys_state, values_state = self.apply(
{ 'params': params },
encoder_state = encoder_state,
keys_state = state.keys_state,
values_state = state.values_state,
attention_mask = attention_mask,
prev_token = state.prev_token,
token_index = token_index
)
logits = super_conditioned(logits, 10.0)
logits = keep_top_k(logits, k=50)
prng_key, prng_key_next = jax.random.split(state.prng_key)
next_token = jax.random.categorical(prng_key, logits, axis=-1)
state = SampleState(
prev_token = next_token,
prng_key = prng_key_next,
keys_state = keys_state,
values_state = values_state
)
return state, next_token
batch_count = encoder_state.shape[0]
state_shape = (
self.layer_count,
batch_count,
self.image_token_count,
self.attention_head_count,
self.embed_count // self.attention_head_count
)
initial_state = SampleState(
prev_token = self.start_token,
prng_key = prng_key,
keys_state = jnp.zeros(state_shape),
values_state = jnp.zeros(state_shape)
)
_, image_tokens = lax.scan(
sample_next_image_token,
initial_state,
jnp.arange(self.image_token_count)
)
return image_tokens