min-dalle-test/replicate_predictor.py

47 lines
1.6 KiB
Python
Raw Normal View History

2022-07-05 00:02:33 +00:00
from min_dalle import MinDalle
2022-06-29 19:53:25 +00:00
import tempfile
import torch, torch.backends.cudnn
2022-07-05 00:02:33 +00:00
from typing import Iterator
2022-06-29 19:53:25 +00:00
from cog import BasePredictor, Path, Input
torch.backends.cudnn.deterministic = False
2022-06-29 19:53:25 +00:00
2022-07-05 09:47:35 +00:00
class ReplicatePredictor(BasePredictor):
2022-06-29 19:53:25 +00:00
def setup(self):
2022-07-12 15:20:37 +00:00
self.model = MinDalle(
is_mega=True,
is_reusable=True,
dtype=torch.float32
)
2022-06-29 19:53:25 +00:00
def predict(
self,
2022-07-12 13:17:18 +00:00
text: str = Input(default='Dali painting of WALL·E'),
2022-07-12 16:04:56 +00:00
output_png: bool = Input(default=False),
2022-07-12 13:17:18 +00:00
intermediate_outputs: bool = Input(default=True),
grid_size: int = Input(ge=1, le=9, default=5),
2022-07-12 16:04:56 +00:00
log2_temperature: float = Input(ge=-3, le=3, default=2),
log2_top_k: int = Input(ge=0, le=14, default=4),
2022-07-12 15:20:37 +00:00
log2_supercondition_factor: float = Input(ge=2, le=6, default=4)
2022-07-05 00:02:33 +00:00
) -> Iterator[Path]:
2022-07-12 15:20:37 +00:00
log2_mid_count = 3 if intermediate_outputs else 0
image_stream = self.model.generate_image_stream(
text = text,
seed = -1,
grid_size = grid_size,
log2_mid_count = log2_mid_count,
temperature = 2 ** log2_temperature,
supercondition_factor = 2 ** log2_supercondition_factor,
top_k = 2 ** log2_top_k,
is_verbose = True
)
2022-07-04 22:37:07 +00:00
2022-07-12 15:20:37 +00:00
i = 0
path = Path(tempfile.mkdtemp())
for image in image_stream:
i += 1
2022-07-12 16:04:56 +00:00
ext = 'png' if i == 2 ** log2_mid_count and output_png else 'jpg'
2022-07-12 15:20:37 +00:00
image_path = path / 'min-dalle-iter-{}.{}'.format(i, ext)
image.save(str(image_path))
yield image_path