2022-06-27 15:57:56 +00:00
|
|
|
import os
|
|
|
|
import json
|
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
from typing import Tuple, List
|
|
|
|
|
2022-06-27 16:43:47 +00:00
|
|
|
from .text_tokenizer import TextTokenizer
|
|
|
|
from .models.vqgan_detokenizer import VQGanDetokenizer
|
|
|
|
from .load_params import load_vqgan_torch_params
|
2022-06-27 15:57:56 +00:00
|
|
|
|
|
|
|
|
|
|
|
def load_dalle_bart_metadata(path: str) -> Tuple[dict, dict, List[str]]:
|
|
|
|
print("loading model")
|
|
|
|
for f in ['config.json', 'flax_model.msgpack', 'vocab.json', 'merges.txt']:
|
|
|
|
assert(os.path.exists(os.path.join(path, f)))
|
|
|
|
with open(path + '/config.json', 'r') as f:
|
|
|
|
config = json.load(f)
|
|
|
|
with open(path + '/vocab.json') as f:
|
|
|
|
vocab = json.load(f)
|
|
|
|
with open(path + '/merges.txt') as f:
|
|
|
|
merges = f.read().split("\n")[1:-1]
|
|
|
|
return config, vocab, merges
|
|
|
|
|
|
|
|
|
|
|
|
def ascii_from_image(image: Image.Image, size: int) -> str:
|
|
|
|
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
|
|
|
|
chars = list('.,;/IOX')
|
|
|
|
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
|
|
|
|
chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)]
|
|
|
|
return '\n'.join(''.join(row) for row in chars)
|
|
|
|
|
|
|
|
|
|
|
|
def save_image(image: numpy.ndarray, path: str) -> Image.Image:
|
|
|
|
if os.path.isdir(path):
|
|
|
|
path = os.path.join(path, 'generated.png')
|
|
|
|
elif not path.endswith('.png'):
|
|
|
|
path += '.png'
|
|
|
|
print("saving image to", path)
|
|
|
|
image: Image.Image = Image.fromarray(numpy.asarray(image))
|
|
|
|
image.save(path)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def tokenize(
|
|
|
|
text: str,
|
|
|
|
config: dict,
|
|
|
|
vocab: dict,
|
|
|
|
merges: List[str]
|
|
|
|
) -> numpy.ndarray:
|
|
|
|
print("tokenizing text")
|
|
|
|
tokens = TextTokenizer(vocab, merges)(text)
|
|
|
|
print("text tokens", tokens)
|
|
|
|
text_tokens = numpy.ones((2, config['max_text_length']), dtype=numpy.int32)
|
|
|
|
text_tokens[0, :len(tokens)] = tokens
|
|
|
|
text_tokens[1, :2] = [tokens[0], tokens[-1]]
|
|
|
|
return text_tokens
|
|
|
|
|
|
|
|
|
|
|
|
def detokenize_torch(
|
|
|
|
image_tokens: numpy.ndarray,
|
|
|
|
model_path: str
|
|
|
|
) -> numpy.ndarray:
|
|
|
|
print("detokenizing image")
|
|
|
|
params = load_vqgan_torch_params(model_path)
|
|
|
|
detokenizer = VQGanDetokenizer()
|
|
|
|
detokenizer.load_state_dict(params)
|
|
|
|
image_tokens = torch.tensor(image_tokens).to(torch.long)
|
|
|
|
image = detokenizer.forward(image_tokens).to(torch.uint8)
|
|
|
|
return image.detach().numpy()
|