min-dalle-test/README.md

122 lines
4.5 KiB
Markdown
Raw Permalink Normal View History

2022-06-27 19:46:04 +00:00
# min(DALL·E)
2022-06-27 17:38:35 +00:00
2022-07-06 15:57:50 +00:00
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
2022-07-01 23:12:43 +00:00
 
2022-06-29 19:24:09 +00:00
[![Replicate](https://replicate.com/kuprel/min-dalle/badge)](https://replicate.com/kuprel/min-dalle)
2022-07-01 23:12:43 +00:00
 
2022-07-06 15:57:50 +00:00
[![Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.com/channels/823813159592001537/912729332311556136)
2022-06-27 21:26:05 +00:00
2022-07-11 10:40:09 +00:00
This is a fast, minimal port of Boris Dayma's [DALL·E Mini](https://github.com/borisdayma/dalle-mini) (with mega weights). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch.
2022-07-04 20:06:49 +00:00
To generate a 4x4 grid of DALL·E Mega images it takes:
2022-07-04 14:54:25 +00:00
- 89 sec with a T4 in Colab
- 48 sec with a P100 in Colab
- 13 sec with an A100 on Replicate
2022-06-27 17:51:48 +00:00
2022-07-13 14:37:40 +00:00
Here's a more detailed breakdown of performance on an A100. Credit to [@technobird22](https://github.com/technobird22) and his [NeoGen](https://github.com/technobird22/NeoGen) discord bot for the graph.
2022-07-11 12:40:31 +00:00
<br />
2022-07-12 01:16:14 +00:00
<img src="https://github.com/kuprel/min-dalle/raw/main/performance.png" alt="min-dalle" width="450"/>
2022-07-11 12:40:31 +00:00
<br />
2022-07-11 12:39:48 +00:00
2022-07-01 23:19:02 +00:00
The flax model and code for converting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax).
2022-07-01 23:03:18 +00:00
## Install
2022-06-27 17:51:48 +00:00
2022-07-01 22:52:40 +00:00
```bash
2022-07-01 22:30:22 +00:00
$ pip install min-dalle
```
2022-06-27 21:26:05 +00:00
2022-07-01 23:03:18 +00:00
## Usage
2022-06-27 21:28:40 +00:00
2022-07-02 00:27:29 +00:00
Load the model parameters once and reuse the model to generate multiple images.
2022-07-01 22:30:22 +00:00
2022-07-01 22:32:48 +00:00
```python
from min_dalle import MinDalle
2022-07-01 22:30:22 +00:00
2022-07-05 11:32:52 +00:00
model = MinDalle(
2022-07-07 12:21:20 +00:00
models_root='./pretrained',
dtype=torch.float32,
device='cuda',
2022-07-05 11:32:52 +00:00
is_mega=True,
2022-07-07 12:21:20 +00:00
is_reusable=True
2022-07-05 11:32:52 +00:00
)
2022-06-27 19:46:04 +00:00
```
2022-07-17 19:29:23 +00:00
The required models will be downloaded to `models_root` if they are not already there. Set the `dtype` to `torch.float16` to save GPU memory. If you have an Ampere architecture GPU you can use `torch.bfloat16`. Set the `device` to either "cuda" or "cpu". Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the `top_k` most probable tokens. The largest logit is subtracted from the logits to avoid infs. The logits are then divided by the `temperature`. If `is_seamless` is true, the images grid will be tiled in token space not pixel space.
2022-07-01 22:54:05 +00:00
```python
2022-07-05 11:32:52 +00:00
image = model.generate_image(
2022-07-06 11:56:57 +00:00
text='Nuclear explosion broccoli',
2022-07-05 11:32:52 +00:00
seed=-1,
grid_size=4,
2022-07-17 19:29:23 +00:00
is_seamless=False,
2022-07-11 17:31:18 +00:00
temperature=1,
top_k=256,
supercondition_factor=32,
2022-07-05 11:53:30 +00:00
is_verbose=False
2022-07-05 11:32:52 +00:00
)
2022-07-05 11:50:56 +00:00
display(image)
2022-06-27 17:38:35 +00:00
```
2022-07-05 17:33:08 +00:00
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/nuclear_broccoli.jpg" alt="min-dalle" width="400"/>
2022-07-13 18:57:23 +00:00
2022-07-13 14:37:40 +00:00
Credit to [@hardmaru](https://twitter.com/hardmaru) for the [example](https://twitter.com/hardmaru/status/1544354119527596034)
2022-07-02 17:06:03 +00:00
2022-07-08 01:15:12 +00:00
2022-07-17 12:34:32 +00:00
### Saving Individual Images
2022-07-08 01:15:12 +00:00
The images can also be generated as a `FloatTensor` in case you want to process them manually.
2022-07-08 01:14:06 +00:00
```python
images = model.generate_images(
text='Nuclear explosion broccoli',
seed=-1,
2022-07-17 19:29:23 +00:00
grid_size=3,
is_seamless=False,
2022-07-11 17:31:18 +00:00
temperature=1,
top_k=256,
supercondition_factor=16,
2022-07-08 01:14:06 +00:00
is_verbose=False
)
```
2022-07-08 10:01:07 +00:00
To get an image into PIL format you will have to first move the images to the CPU and convert the tensor to a numpy array.
2022-07-08 09:59:06 +00:00
```python
2022-07-08 17:26:53 +00:00
images = images.to('cpu').numpy()
2022-07-08 09:59:06 +00:00
```
2022-07-08 17:26:53 +00:00
Then image $i$ can be coverted to a PIL.Image and saved
2022-07-08 09:59:06 +00:00
```python
image = Image.fromarray(images[i])
2022-07-08 17:24:13 +00:00
image.save('image_{}.png'.format(i))
2022-07-17 12:34:32 +00:00
```
2022-07-08 01:14:06 +00:00
2022-07-14 14:53:24 +00:00
### Progressive Outputs
2022-07-05 11:50:56 +00:00
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image. Set `progressive_outputs` to `True` to enable this. An example is implemented in the colab.
2022-07-03 19:40:58 +00:00
2022-07-02 16:55:59 +00:00
```python
2022-07-05 11:32:52 +00:00
image_stream = model.generate_image_stream(
text='Dali painting of WALL·E',
seed=-1,
grid_size=3,
2022-07-17 19:29:23 +00:00
progressive_outputs=True,
is_seamless=False,
2022-07-11 17:31:18 +00:00
temperature=1,
top_k=256,
supercondition_factor=16,
2022-07-05 11:53:30 +00:00
is_verbose=False
2022-07-05 11:32:52 +00:00
)
for image in image_stream:
2022-07-05 11:49:00 +00:00
display(image)
2022-07-02 16:55:59 +00:00
```
2022-07-05 11:32:52 +00:00
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/dali_walle_animated.gif" alt="min-dalle" width="300"/>
2022-07-01 23:15:31 +00:00
### Command Line
2022-07-01 23:19:02 +00:00
Use `image_from_text.py` to generate images from the command line.
2022-07-01 23:15:31 +00:00
```bash
2022-07-05 11:21:15 +00:00
$ python image_from_text.py --text='artificial intelligence' --no-mega
2022-07-01 23:15:31 +00:00
```
2022-07-03 20:49:38 +00:00
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/artificial_intelligence.jpg" alt="min-dalle" width="200"/>