Files
doormind/train.py
Tanner Collin 05ac4be541 feat: add dropout and weight decay to prevent overfitting
Co-authored-by: aider (gemini/gemini-2.5-pro-preview-05-06) <aider@aider.chat>
2025-07-31 17:18:40 -06:00

183 lines
7.0 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split, WeightedRandomSampler, Dataset
from torchvision import datasets, transforms
from PIL import Image, ImageDraw
import os
import argparse
from model import (CropLowerRightTriangle, GarageDoorCNN, TRIANGLE_CROP_WIDTH,
TRIANGLE_CROP_HEIGHT, RESIZE_DIM)
def check_crop():
"""Saves a sample cropped image for debugging purposes and exits."""
# Find a sample image from your dataset
SAMPLE_IMAGE_DIR = 'data/labelled/open'
if not os.path.isdir(SAMPLE_IMAGE_DIR) or not os.listdir(SAMPLE_IMAGE_DIR):
print(f"Error: Cannot find sample image in '{SAMPLE_IMAGE_DIR}'.")
print("Please ensure the directory exists and contains images.")
return
sample_image_name = os.listdir(SAMPLE_IMAGE_DIR)[0]
sample_image_path = os.path.join(SAMPLE_IMAGE_DIR, sample_image_name)
print(f"Creating debug crop from image: {sample_image_path}")
# Load the image
image = Image.open(sample_image_path)
# Create the transform
cropper = CropLowerRightTriangle(triangle_width=TRIANGLE_CROP_WIDTH, triangle_height=TRIANGLE_CROP_HEIGHT)
# Apply the transform
cropped_image = cropper(image)
# Save the result
output_path = "cropped_debug_output.png"
cropped_image.save(output_path)
print(f"Debug image saved to '{output_path}'.")
class TransformedSubset(Dataset):
"""
A wrapper for a Subset that allows applying a transform.
This is necessary because a transform cannot be applied to a Subset directly.
"""
def __init__(self, subset, transform=None):
self.subset = subset
self.transform = transform
def __getitem__(self, index):
# The subset returns the data from the original dataset (img, label)
img, label = self.subset[index]
if self.transform:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.subset)
def train_model():
# --- Hyperparameters and Configuration ---
DATA_DIR = 'data/labelled'
MODEL_SAVE_PATH = 'garage_door_cnn.pth'
NUM_EPOCHS = 10
BATCH_SIZE = 32
LEARNING_RATE = 0.001
WEIGHT_DECAY = 1e-5 # L2 regularization
# --- Data Preparation ---
# Define separate transforms for training (with augmentation) and validation (without)
train_transforms = transforms.Compose([
CropLowerRightTriangle(triangle_width=TRIANGLE_CROP_WIDTH, triangle_height=TRIANGLE_CROP_HEIGHT),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.2),
transforms.Resize((RESIZE_DIM, RESIZE_DIM)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transforms = transforms.Compose([
CropLowerRightTriangle(triangle_width=TRIANGLE_CROP_WIDTH, triangle_height=TRIANGLE_CROP_HEIGHT),
transforms.Resize((RESIZE_DIM, RESIZE_DIM)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load dataset without transforms, as they will be applied to subsets
untransformed_dataset = datasets.ImageFolder(DATA_DIR)
# Split into training and validation sets
train_size = int(0.8 * len(untransformed_dataset))
val_size = len(untransformed_dataset) - train_size
train_subset, val_subset = random_split(untransformed_dataset, [train_size, val_size])
# Apply the respective transforms to the subsets using our wrapper
train_dataset = TransformedSubset(train_subset, transform=train_transforms)
val_dataset = TransformedSubset(val_subset, transform=val_transforms)
# --- Handle Class Imbalance ---
# Get labels for training set from the subset indices
train_labels = [untransformed_dataset.targets[i] for i in train_subset.indices]
# Get class counts
class_counts = torch.bincount(torch.tensor(train_labels))
# Compute weight for each class (inverse of count)
class_weights = 1. / class_counts.float()
# Assign a weight to each sample in the training set
sample_weights = torch.tensor([class_weights[label] for label in train_labels])
# Create a WeightedRandomSampler to balance the classes during training
sampler = WeightedRandomSampler(weights=sample_weights, num_samples=len(sample_weights), replacement=True)
# The sampler will handle shuffling, so shuffle must be False for the DataLoader
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=sampler)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
# --- Model, Loss, Optimizer ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = GarageDoorCNN(resize_dim=RESIZE_DIM).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
# --- Training Loop ---
print("Starting training...")
for epoch in range(NUM_EPOCHS):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_dataset)
print(f"Epoch {epoch+1}/{NUM_EPOCHS}, Training Loss: {epoch_loss:.4f}")
# --- Validation Loop ---
model.eval()
val_loss = 0.0
corrects = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
corrects += torch.sum(preds == labels.data)
val_epoch_loss = val_loss / len(val_dataset)
val_epoch_acc = corrects.double() / len(val_dataset)
print(f"Validation Loss: {val_epoch_loss:.4f}, Accuracy: {val_epoch_acc:.4f}")
# --- Save the trained model ---
torch.save(model.state_dict(), MODEL_SAVE_PATH)
print(f"Model saved to {MODEL_SAVE_PATH}")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train a CNN for garage door detection or check the image crop.")
parser.add_argument('--check-crop', action='store_true', help='Save a sample cropped image and exit.')
args = parser.parse_args()
if args.check_crop:
check_crop()
else:
# Check if data directory exists
if not os.path.isdir('data/labelled/open') or not os.path.isdir('data/labelled/closed'):
print("Error: Data directories 'data/open' and 'data/closed' not found.")
print("Please create them and place your image snapshots inside.")
else:
train_model()